Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Je mehr graue Hirnsubstanz, umso altruistischer

12.07.2012
Das Volumen einer kleinen Hirnregion beeinflusst die Neigung zu altruistischem Verhalten.
Forschende der Universität Zürich zeigen: Personen, die sich altruistischer als andere verhalten, haben mehr graue Hirnsubstanz an der Grenze zwischen Scheitel- und Schläfenlappen. Sie zeigen erstmals, dass ein Zusammenhang besteht zwischen Hirnanatomie, Hirnaktivität und altruistischem Verhalten.

Warum sind manche Menschen sehr egoistisch, andere hingegen sehr altruistisch? Frühere Studien haben gezeigt, dass soziale Kategorien wie Geschlecht, Einkommen oder Ausbildung unterschiedliches altruistisches Verhalten kaum erklären können. Neuere neurowissenschaftliche Studien legten nahe, dass Unterschiede in der Hirnstruktur mit Unterschieden in Persönlichkeitsmerkmalen und Fähigkeiten zusammenhängen können.

Wo (gelb) sich der Zusammenhang zwischen Altruismus und grauer Hirnsubstanz in der Region zwischen Scheitel- und Schläfenlappen manifestiert. UZH

Nun zeigt erstmals ein Forschungsteam der Universität Zürich um Ernst Fehr, Direktor des Instituts für Volkswirtschaftslehre, dass ein Zusammenhang zwischen Hirnanatomie und altruistischem Verhalten besteht.

Zur Klärung ob unterschiedliches altruistisches Verhalten neurobiologische Ursachen hat, mussten Probanden Geldbeträge zwischen sich selbst und einem anonymen Spielpartner teilen. Die Teilnehmer hatten dabei stets die Möglichkeit, auf einen gewissen Teil des Geldbetrages zugunsten der anderen Person zu verzichten. Ein derartiger Verzicht kann als altruistisches Verhalten gewertet werden, weil man damit anderen Menschen auf eigene Kosten hilft. Die Forschenden fanden hierbei grosse Unterschiede: Manche Teilnehmer waren fast nie bereit, auf eigenes Geld zugunsten anderer zu verzichten, andere hingegen verhielten sich ausgeprägt altruistisch.

Mehr graue Hirnsubstanz

Das Ziel der Studie war jedoch herauszufinden, warum es solche Unterschiede gibt. Frühere Studien legten dar, dass eine bestimmte Hirnregion – die Übergangsregion zwischen dem Scheitel- und dem Schläfenlappen – mit der Fähigkeit zusammenhängt, sich in die Lage anderer Menschen hineinzuversetzen, um ihre Gefühle und Gedanken zu verstehen. Altruismus wiederum hängt mit dieser Fähigkeit wahrscheinlich eng zusammen. Daher vermuteten die Forschenden, dass individuelle Unterschiede in dieser Grenzregion mit unterschiedlichem altruistischen Verhalten zusammenhängen. Was laut Yosuke Morishima, Postdoktorand am Institut für Volkswirtschaftslehre der Universität Zürich, der Fall ist: «Personen, die sich altruistischer verhielten, wiesen auch mehr graue Hirnsubstanz in der Übergangsregion zwischen Scheitel- und Schläfenlappen auf.»

Unterschiedliche Hirnaktivität

Während ihrer Entscheidungen zur Geldteilung zeigten die Studienteilnehmenden auch deutliche Unterschiede in ihrer Hirnaktivität. Bei egoistischen Personen ist die kleine Hirnregion hinter dem Ohr schon bei geringen Kosten einer altruistischen Handlung aktiv. Bei altruistischen Personen hingegen wird diese Hirnregion erst stärker aktiv, wenn diese Kosten bereits sehr hoch sind. Die Hirnregion ist folglich dann besonders stark aktiviert, wenn Menschen an die Grenzen ihrer Bereitschaft gelangen, altruistisch zu handeln. Weil zu diesem Zeitpunkt, so vermuten die Forschenden, die grösste Notwendigkeit besteht, den natürlichen Egozentrismus des Menschen durch Aktivierung dieser Hirnregion zu überwinden.
Ernst Fehr stellt abschliessend fest: «Das sind aufregende Ergebnisse für uns. Man sollte daraus aber keinesfalls den Schluss ziehen, dass altruistisches Verhalten nur biologisch bestimmt ist.» Das Volumen an grauer Hirnsubstanz wird auch durch soziale Prozesse beeinflusst. Die Forschungsergebnisse werfen, so Fehr, die Frage auf, ob durch geeignetes Training oder soziale Normen das Wachstum jener Hirnregionen gefördert werden kann, die für altruistisches Verhalten wichtig sind.

Die Studie ist Teil des grossen Forschungsprojekts «Neurochoice», das von SystemsX.ch initiiert und teilfinanziert wird.

Literatur:

Yosuke Morishima, Daniel Schunk, Adrian Bruhin, Christian C. Ruff, and Ernst Fehr. Linking brain structure and activation in the temporoparietal junction to explain the neurobiology of human altruism. Neuron. July 12, 2012.

Kontakt:

Prof. Dr. Ernst Fehr
Institut für Volkswirtschaftslehre
Universität Zürich
Tel. +41 44 634 37 01
E-Mail: ernst.fehr@econ.uzh.ch

Yosuke Morishima, M.D., Ph.D
Institut für Volkswirtschaftslehre
Universität Zürich
Tel: +41 44 634 51 69
yosuke.morishima@econ.uzh.ch

Beat Müller | Universität Zürich
Weitere Informationen:
http://www.uzh.ch

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Wie gesund werden wir alt?
18.09.2017 | Medizinische Hochschule Hannover

nachricht Entrepreneurship-Studie: Großes Potential für Unternehmensgründungen in Deutschland
15.09.2017 | Alexander von Humboldt Institut für Internet und Gesellschaft

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften