Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Großer Aufwand - große Erwartung

09.01.2013
Wer hart arbeitet, will auch entsprechend dafür belohnt werden. Diese Regel wird offenbar im Gehirn des Menschen ganz automatisch befolgt.

Das haben Wissenschaftler des Center for Economics and Neuroscience (CENs) der Universität Bonn gezeigt. Bei Probanden, die schwierige mathematische Aufgaben lösen mussten, hing die Aktivität in belohnungsverarbeitenden Gehirnarealen stärker von der Höhe der Belohnung ab als nach leichten Aufgaben. Die Studie ist nun im Journal „Social Cognitive and Affective Neuroscience“ erschienen.

Stehen Aufwand und Ertrag im richtigen Verhältnis? Dieser Frage folgen praktisch alle Lebewesen bei ihren Entscheidungen. „Ein Tier muss automatisch die Anforderung befolgen, nicht mehr Energie in die Futtersuche zu investieren, als Beute im Gegenwert zu erwarten ist - das ist schlicht ein Prinzip des Überlebens“, sagt Privatdozent Dr. Klaus Fließbach vom Center for Economics and Neuroscience (CENs) der Universität Bonn, der nun am Deutschen Zentrum für Neurodegenerative Erkrankungen (DZNE) in Bonn forscht. Auch der Mensch folgt erfahrungsgemäß dieser Regel, selbst wenn es nicht um Leben oder Tod geht: Wer sich im Job richtig anstrengt, gibt sich meist nicht mit einem lauwarmen Händedruck als Belohnung zufrieden.

Probanden lösen verschieden schwere Rechenaufgaben

Wie diese Entscheidungsprozesse im Gehirn ablaufen, testeten die Wissenschaftler der Universität Bonn zusammen mit Kollegen der Universität Düsseldorf an insgesamt 28 Probanden. Im Hirnscanner mussten sie mathematische Aufgaben lösen, die hinsichtlich ihres Schwierigkeitsgrades sehr unterschiedlich waren. Sobald die Aufgabe auf der Videobrille vor den Augen eingeblendet wurde, begannen die Testpersonen zu rechnen. Anschließend wurden verschiedene Ergebnisse zur Auswahl angezeigt, die Testpersonen mussten binnen Sekunden das richtige auswählen. Im Erfolgsfall bekamen die Probanden eine Belohnung zwischen fünf und 35 Euro.

Bei der Belohnung ist Frustration programmiert

„Allerdings wurde die Belohnung nicht an den Schwierigkeitsgrad der Rechenaufgabe angepasst, sondern rein zufällig gewählt“, berichtet Katarina Kuss vom CENs, die zusammen mit Julien Hernandez-Lallement die Erstautorenschaft der Publikation übernommen hat. Damit wurden die Erwartungen der Testpersonen an die Belohnung teilweise enttäuscht. Doch selbst wer für eine vergleichsweise leichte Aufgabe sehr gut entlohnt wurde, konnte noch leer ausgehen: Die Probanden mussten zumindest einen Teil ihres Gewinns in Form einer unfreiwilligen „Spende“ wieder abgeben. „Auch die Spendenhöhe war jeweils zufällig gewählt“, sagt die Erstautorin. „Das bedeutete im Maximalfall den Verzicht auf den kompletten Betrag, der bei einer Aufgabe eingenommen wurde.“

Belohnungszentren sind bei hoher Erwartung besonders aktiv

Die Wissenschaftler verfolgten während des Rechnens und Spendens mit dem funktionellen Magnetresonanztomografen die Aktivität der verschiedenen Areale in den Gehirnen der Probanden. „Dabei zeigte sich, dass die Höhe einer Belohnung umso wichtiger wird, je größer die Anstrengung bei der Rechenaufgabe war“, berichtet Dr. Fließbach. „Hingegen ist die Höhe der Entlohnung nicht so entscheidend, wenn der Aufwand zuvor gering war.“ Die Forscher registrierten insbesondere in den Belohnungszentren - dem anterioren cingulären Cortex und dem Nucleus accumbens - eine erhöhte Aktivität, wenn die Rechenaufgabe schwierig und die Belohnung hoch war. Wurde hingegen ein hoher Anteil des erworbenen Betrags in Form der erzwungenen „Spende“ wieder abgezogen, war das Signal in der Inselrinde besonders groß. In dieser Hirnstruktur werden negative Emotionen und Frustrationen verarbeitet.

Ergebnisse sind für Verhaltensökonomie und Wirtschaftsleben wichtig

„Die Ergebnisse sind sehr relevant für die verhaltensökonomische Forschung“, sagt Dr. Fließbach. „Probanden verhalten sich anders, wenn sie Geld geschenkt bekommen, als wenn sie sich dafür anstrengen müssen.“ Dies müsse bei Versuchsanordnungen berücksichtigt werden. Für das Wirtschaftsleben zeige das Experiment, dass mit Leistung auch klare Belohnungserwartungen verbunden sind. Es handelt sich dabei möglicherweise um kein erworbenes Verhalten. „Die Tatsache, dass sich dieser Effekt durch eine einfache Manipulation unmittelbar im Gehirn nachweisen lässt, legt nahe, dass dies ein grundlegender, automatisierter Mechanismus ist, der ohne bewusstes Nachdenken abläuft“, sagt der Wissenschaftler.

Publikation: Effort increases sensitivity to reward and loss magnitude in the human brain, Journal “Social Cognitive an Affective Neuroscience”, DOI: 10.1093/scan/nss147

Kontakt:

Privatdozent Dr. Klaus Fließbach
Deutsches Zentrum für
Neurodegenerative Erkrankungen (DZNE)
& Klinik und Poliklinik
für Psychiatrie und Psychotherapie
Tel.: 0228/287-11220
E-Mail: Klaus.Fliessbach@ukb.uni-bonn.de
Katarina Kuss
Center for Economics and Neuroscience (CENs)
Tel: 0228/73-8287
E-Mail: kkuss@uni-bonn.de

Johannes Seiler | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Diabetesmedikament könnte die Heilung von Knochenbrüchen verbessern
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

nachricht Soziale Phobie: Hinweise auf genetische Ursache
10.03.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit