Forscher finden Signalweg, der Knochen wachsen lässt

Das internationale Forscherteam unter Bonner Beteiligung hat einen biochemischen Signalweg in Knochenzellen identifiziert, der äußere Kräfte registriert und die Information in den Zellkern weiterleitet. Dort wird das Knochenwachstum angeregt. Verantwortlich sind vier Eiweißmoleküle, die sich in einer Kettenreaktion gegenseitig anschalten und so die Botschaft weitergeben.

„Knochen sind nicht statisch, sondern unterliegen einem ständigen Umbau“, sagt Professor Dr. Alexander Pfeifer vom Institut für Pharmakologie und Toxikologie, der an der Studie mitgewirkt hat. Knochen passen sich der jeweiligen Belastung an: Wo man Kraft auf sie ausübt, wachsen sie; wo Beanspruchung fehlt, bauen sie sich ab. Das weiß jeder, der schon mal längere Zeit einen Gips getragen hat. Bisher war jedoch unklar, wie die Zellen mechanische Belastungen interpretieren und in den Zellkern weiterleiten. Diese Lücke haben die Forscher jetzt geschlossen.

„Stellen Sie sich ein Schiff vor, das mit ausgeworfenem Anker fährt“, sagt Prof. Pfeifer. „Hängt bei einem solchen Schiff der Anker am Meeresgrund fest, ist die Ankerkette gespannt und das Schiff muss mehr Gas geben, um weiterzufahren. Übertragen wir dieses Bild auf die Knochenzellen, ist der Anker der Kraftfühler der Zelle und die Schaltzentrale der Zellkern. Wir haben nun herausgefunden, wie so eine Ankerkette aussieht.“ In der Schaltzentrale, dem Zellkern, wird bei Belastung dann dafür gesorgt, dass sich mehr und bessere Knochenzellen bilden. Mäuse, bei denen die Forscher den Signalweg künstlich ausgeschaltet haben, sind kleinwüchsig: Ihre Knochenbildung ist gestört.

Entscheidend bei dem natürlichen Verlauf aus Knochenaufbau und –abbau ist stets, dass nicht mehr Knochengewebe abgebaut als gebildet wird. Bei Osteoporose-Patienten ist das Gleichgewicht hingegen gestört: Sie bilden nicht ausreichend Knochenmasse, um den Abbau zu kompensieren; die Knochen der Patienten brechen daher leicht.

Für die Krankheit existiert bisher keine Therapie: „Knochenaufbauende Medikamente gibt es noch nicht“, erläutert Professor Pfeifer. Die neuen Erkenntnisse sind ein viel versprechender Schritt in diese Richtung, denn „der neue Signalweg hat einen anabolen Effekt, das heißt, er fördert den Aufbau von körpereigenem Knochengewebe.“ Seine Eiweißmoleküle sind daher aussichtsreiche Ziele für neue Medikamente gegen Osteoporose.

Die Studie ist im Fachmagazin „Science Signaling“ erschienen:

H. Rangaswami, R. Schwappacher, N. Marathe, S. Zhuang, D.E. Casteel, B. Haas, Y. Chen, A. Pfeifer, H. Kato, S. Shattil, G.R. Boss, R.B. Pilz, Cyclic GMP and Protein Kinase G Control a Src-Containing Mechanosome in Osteoblasts, Science Signaling, 3, 2010.

Kontakt:
Prof. Dr. Alexander Pfeifer
Institut für Pharmakologie und Toxikologie der Universität Bonn
Telefon: 0228/287-51300
E-Mail: alexander.pfeifer@uni-bonn.de

Media Contact

Frank Luerweg idw

Weitere Informationen:

http://www.uni-bonn.de

Alle Nachrichten aus der Kategorie: Studien Analysen

Hier bietet Ihnen der innovations report interessante Studien und Analysen u. a. aus den Bereichen Wirtschaft und Finanzen, Medizin und Pharma, Ökologie und Umwelt, Energie, Kommunikation und Medien, Verkehr, Arbeit, Familie und Freizeit.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer