Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

ETH-Studie zur Selbstaufopferung bei Salmonellen

21.08.2008
Einzelne Zellen einer Bakterienpopulation können ihr Leben einsetzen, damit sich die anderen Zellen möglichst gut vermehren. Biologen der ETH Zürich beschreiben am Beispiel von Salmonellen erstmals ein biologisches Konzept, bei dem Aufopferung für andere bis hin zur Selbstzerstörung sowie Zufallsprozesse eine wichtige Rolle spielen.

Bei der Schlacht von Sempach soll Arnold Winkelried ein Bündel Lanzen gepackt und -in dem er sich selbst aufspiessen liess - für die Eidgenossen eine Bresche in die feindlichen Linie geschlagen haben. Selbstaufopferung kommt aber nicht nur beim Menschen, sondern auch bei andern Lebewesen, selbst bei einfachen Bakterien, vor.

ETH-Biologen aus den Gruppen von Prof. Martin Ackermann und Prof. Wolf-Dietrich Hardt in Zusammenarbeit mit Prof. Michael Doebeli von der UBC in Vancouver beschreiben diese Woche im Fachmagazin Nature, wie es durch einen molekularen Zufallsprozess bei der Zellteilung dazu kommt, dass die Schwesterzellen von Bakterien neue Funktionen erlangen und sich selbst für andere opfern.

Selbstaufopferung als Überlebensstrategie

Die Forscher untersuchen dieses aussergewöhnliche biologische Konzept am Beispiel von Salmonellen. Salmonellen sind stäbchenförmige Bakterien, welche bei Menschen schwere Infektionskrankheiten hervorrufen können. Am Anfang stehen Salmonellen, welche mit verunreinigter Nahrung - zum Beispiel in Eiern oder Pouletfleisch - aufgenommen werden und in den Darm gelangen. Dort können sie sich aber wegen der Mik-roorganismen, die allgemein als "Darmflora" bezeichnet werden, nur schlecht vermehren. Laut Ackermann, Hardt und Doebeli haben Salmonellen für dieses Problem eine überraschende Lösung entwickelt.

Ein erster Teil der Bakterien verbleibt im Innern des Darms. Ein zweiter Teil der Zellen zeigt ein Verhalten, welches zu ihrer eigenen Zerstörung führt. Sie dringen ins Darmgewebe ein und werden dort durch das Immunsystem getötet. Durch diesen Vorgang wird eine Darmentzündung ausgelöst, welche einen grossen Teil der Darmflora eliminiert. Die im Darm verbliebene erste Gruppe erhält dadurch die Gelegenheit, sich ungehindert zu vermehren und die Erkrankung des Wirtes einzuleiten.

Der Zufall entscheidet

Ob eine Zelle zur ersten selbstaufopfernden oder zur zweiten profitierenden Gruppe gehört, entscheidet sich bei der Zellteilung. Salmonellen vermehren sich rasch durch Zellteilung und bilden genetisch identische Abkömmlinge. Bei der Zellteilung werden Zellbestandteile zufällig auf die beiden Tochterzellen verteilt. Dieser Zufallsprozess führt dazu, dass nicht alle Abkömmlinge dieselben Eigenschaften haben. Zwei Gruppen von Zellen entstehen, welche - obwohl genetisch identisch - durch Arbeitsteilung unterschiedliche Eigenschaften und Verhaltensweisen erlangen können; eine Gruppe dringt ins Gewebe und stirbt, und die andere bleibt im Darm und profitiert. Gerade weil sie genetisch identisch sind, funktioniert dieses biologische Konzept so gut: Wären sie ge-netisch unterschiedlich, würde sich der aufopfernde Typ rasch selbst ausrotten. Wie gross der Anteil an Zellen ist, die dann quasi als Winkelried fungieren, ist wahrscheinlich ein genetisch kodiertes Merkmal.

Grundlegende Erkenntnisse

Die Arbeit bietet eine neue Erklärung für die Bedeutung von Zufallsprozessen in der Biologie. Zudem ermöglicht die Studie bisher unbekannte Einblicke in die Biologie von Salmonellen. Ähnliche biologische Konzepte sind wahrscheinlich auch bei anderen Krankheitserregern wie Clostridien und Streptokokken von Bedeutung. Um solche Krankheitserreger wirksam bekämpfen zu können, sei eine umfassende Kenntnis ihrer Biologie notwendig, sagt Ackermann.

Martin Ackermann betont, dass dieses Projekt nur durch die Zusammenarbeit von drei Spezialistengruppen möglich geworden ist. Hardts Gruppe ist auf Salmonellen spezialisiert, Doebeli ist Mathematiker und Theoretischer Biologe. Ackermanns Gruppe unter-sucht molekulare Zufallsprozesse bei der Ausprägung von biologischen Merkmalen.

Originalbeitrag:
Ackermann M et al. Self-destructive cooperation mediated by phenotypic noise; Nature 454, 987-990 (21 August 2008), doi:10.1038/nature07067
Weitere Informationen:
ETH Zürich
Prof. Dr. Wolf-Dietrich Hardt
Institut für Mikrobiologie
Tel: +41 (0)44 632 51 43
wolf-dietrich.hardt@micro.biol.ethz.ch
ETH Zürich
Prof. Dr. Martin Ackermann
Institut für Integrative Biologie
Tel: +41 (0)44 632 69 28
martin.ackermann@env.ethz.ch

Franziska Schmid | idw
Weitere Informationen:
http://www.ethz.ch
http://www.ethlife.ethz.ch/archive_articles/080821-salmonellen_asymm_teilung/index

Weitere Berichte zu: Bakterien Darm Krankheitserreger Salmonelle Selbstaufopferung Zellteilung

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Europaweite Studie zu Antibiotikaresistenzen in Krankenhäusern
18.11.2016 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten