Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Proteinmolekül beeinflusst Signalübertragung im Gehirn

26.06.2003


Biologen der RUB haben gemeinsam mit Forschern aus Göttingen und den USA den "Organisator" der Schaltstellen im Gehirn (Synapsen) gefunden: bestimmte Proteinmoleküle, so genannte Neurexine, die sich an den Synapsen befinden.


Nervenzelle



Sie beeinflussen die Aktivität von Kalziumkanälen in der Zellmembran, die wiederum für die Signalweiterleitung entscheidend sind. Über die Ergebnisse ihrer Studie berichten die Wissenschaftler in NATURE 423 vom 26.6.2003.



Alle Lern- und Gedächtnisleistungen unseres Gehirns basieren auf dem Informationsfluss zwischen den Nervenzellen über Synapsen, die Schaltstellen im Gehirn. Dieser Informationsfluss muss effizient organisiert sein. Als Organisator haben Gunnar Kattenstroth und Kurt Gottmann (Lehrstuhl für Zellphysiologie, Fakultät für Biologie der RUB) gemeinsam mit Göttinger und Amerikanischen Forschern Proteinmoleküle ausgemacht: die sog. Neurexine. Sie befinden sich an den Synapsen und beeinflussen die Aktivität von Kalziumkanälen in der Zellmembran, die wiederum für die Signalweiterleitung entscheidend sind. Bisher hatte man vermutet, dass Neurexine nur strukturelle Aufgaben übernehmen. Über die Ergebnisse der Studie berichtet das Wissenschaftsmagazin NATURE in seiner Ausgabe vom 26. Juni 2003.

Nervenzellen übertragen Informationen

Das menschliche Gehirn enthält etwa 1010 Nervenzellen (Neurone), von denen jede einzelne an ca. 1.000 Kontaktstellen mit anderen verknüpft ist. Sie leiten Signale an ihren langen Fortsätzen, den Axonen, in Form von elektrischen Spannungsveränderungen weiter. An den Kontaktstellen zwischen zwei Nervenzellen - den Synapsen - ist die elektrische Weiterleitung unterbrochen. Die Membranen benachbarter Neuronen trennt ein sehr schmaler Spalt. Jede Nervenzelle bildet eine Vielzahl synaptischer Kontakte mit ihren unterschiedlichen Partnerzellen. Damit die Informationsübertragung zwischen den Nervenzellen Sinn ergibt, müssen die Eigenschaften der Synapsen den nachgeschalteten Nervenzellen angepasst werden. Dem Mechanismus dieser Regulation sind die Forscher nun auf die Spur gekommen.

Sind die Neurexine defekt, bleiben die Signale auf der Strecke

Sie untersuchten Mäuse, deren Neurexine - eine bestimmte Klasse von Zelladhäsionsmolekülen - defekt waren. Zelladhäsionsmoleküle sind Proteine in der Zellmembran, denen bisher hauptsächlich strukturelle Aufgaben zugeschrieben wurden. Neurexine werden in die synaptische Membran der vorgeschalteten Zelle eingelagert, wo sie mit anderen Proteinen wechselwirken und zudem Proteine in der Membran der nachgeschalteten Zelle erkennen können. Das Forscherteam beobachtete, dass bei Mäusen mit defekten Neurexinen die Struktur von Synapsen relativ normal, die Übertragung von Nervenimpulsen jedoch massiv gestört war. "Einen so deutlichen Einfluss von neuronalen Zelloberflächenmolekülen auf die Funktion der Synapse konnten wir hier erstmalig beobachten", so Dr. Kattenstroth. "Die nächste Frage war: Wie beeinflussen Neurexine die Signalübertragung zwischen den Neuronen?"

Angriffspunkt der Neurexine: Die Aktivität der Kalziumkanäle

Bei der Informationsübertragung an Synapsen spielen Kalziumkanäle eine entscheidende Rolle: Die Spannungsveränderung in der präsynaptischen Membran führt nach gegenwärtiger Vorstellung zur Öffnung von Kanälen in dieser Membran, die nur für Kalziumionen durchlässig sind. Der nachfolgende Anstieg der Kalziumkonzentration in der Zelle löst dann einen Prozess aus, der zur Signalübertragung an die nachgeschaltete Zelle führt. Durch verschiedene Untersuchungen konnten die Wissenschaftler den Angriffspunkt der Neurexine in den Mechanismus der Signalübertragung so weit einengen, bis schließlich feststand: Neurexine sind an der Synapse lokalisiert, beeinflussen die Aktivität der Kalziumkanäle und damit letztlich die Effizienz der neuronalen Informationsübertragung. Die untersuchte Klasse von Zelladhäsionsproteinen bildet somit eine molekulare Schnittstelle, an der die Eigenschaften der neuronalen Signalübertragung entscheidend angepasst werden können. "Diese Arbeit aus dem Bereich der biomedizinischen Grundlagenforschung hilft, die Zusammenhänge von Struktur und Funktion neuronaler Verknüpfungen zu verstehen", so Dr. Kattenstroth.

Weitere Informationen:

Dr. Gunnar Kattenstroth, PD Dr. Kurt Gottmann
Lehrstuhl für Zellphysiologie (Prof. Dr. Dr. Dr. Hanns Hatt)
Fakultät für Biologie der Ruhr-Universität Bochum
ND 4/175, 44780 Bochum
Tel. 0234/32-26793/-26756
Fax: 0234/32-14129
E-Mail: gunnar.kattenstroth@ruhr-uni-bochum.de
kurt.gottmann@ruhr-uni-bochum.de

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de

Weitere Berichte zu: Membran Nervenzelle Neurexine Proteinmolekül Signalübertragung Synapse Zelle

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Der Klang des Ozeans
12.01.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Verstädterung wird 300.000 km2 fruchtbarsten Ackerlands verschlingen
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungsnachrichten

Wie das Wissen in der Technik entsteht

17.01.2017 | Förderungen Preise

Weltweit erste Solarstraße in Frankreich eingeweiht

16.01.2017 | Energie und Elektrotechnik