Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Direkte Laser-Beschleunigung von Ionen für medizinische Anwendungen

01.08.2008
Forscher am Heidelberger Max-Planck-Institut für Kernphysik (MPIK) konnten in einer theoretischen Studie zeigen, dass mittels extrem stark fokussierter Petawatt-Laserstrahlen Ionen direkt auf Energien beschleunigt werden können, wie sie für eine Tumortherapie erforderlich sind.

Die Modellrechnungen ergaben ferner, dass die für den therapeutischen Einsatz geforderte Qualität der Ionenstrahlen für eine geeignet gewählte Polarisation des Laserlichts erreichbar ist. Falls es gelingt, die zu beschleunigenden Ionen in genügend großer Dichte bereitzustellen, könnte die Technik der Laserbeschleunigung in der Zukunft eine wesentlich kostengünstigere Alternative zu herkömmlichen Beschleunigersystemen darstellen.

Strahlen aus beschleunigten schweren geladenen Teilchen stehen inzwischen an mehreren Orten weltweit für die Tumortherapie (Hadrontherapie) zur Verfügung. Im Herbst dieses Jahres werden am neu fertig gestellten Heidelberger Ionenstrahl-Therapiezentrum (HIT) die ersten Patienten behandelt werden. Die besondere Eigenschaft dieser Teilchen, eine genau definierte Reichweite im Gewebe bei gegebener Energie, ermöglicht eine präzise Bestrahlung in einem Rasterscanverfahren.

Dieses schont das umgebende Gewebe und ermöglicht die Behandlung nicht operabler, kompliziert geformte bösartige Tumoren. Anlagen zur Hadrontherapie bestehen aus einem konventionellen Beschleuniger, welches die Ionen (in der Regel Protonen oder Kohlenstoffkerne) auf Energien von bis zu einigen 100 Megaelektronenvolt bringt und einem aufwendigen Strahlführungssystem (Gantry), welches eine Bestrahlung aus allen Raumrichtungen für das o. g. Rasterscanverfahren ermöglicht. Bedingt durch die hohe Energie und Masse der Teilchen benötigt man zu deren Ablenkung sehr starke Magnetfelder, weshalb ein typischer Gantry-Aufbau eine Masse von mehreren 100 Tonnen hat und zugleich den Strahl mit höchster Präzision justieren muss.

... mehr zu:
»Ion »Laser

Da dies einen nicht unerheblichen finanziellen Aufwand darstellt, gibt es Überlegungen, für die Zukunft weniger aufwendige, alternative Beschleunigungs- und Strahlführungssysteme zu entwickeln. Ein vielversprechender Ansatz ist die Beschleunigung geladener Teilchen in starken Laserfeldern, zumal die Lasertechnologie einen der dynamischsten Fortschritte in der gesamten Physik zu verzeichnen hat. So werden in naher Zukunft kompakte Anlagen mit Laserleistungen im Petawattbereich zur Verfügung stehen. Die Beschleunigung der Ionen könnte dann in unmittelbarer Nähe des Bestrahlungsplatzes aus der gewünschten Richtung erfolgen; die aufwendige magnetische Strahlführung würde durch ein erheblich leichteres optisches System für den Laserstrahl ersetzt.

Forscher der Gruppe von Christoph Keitel am Max-Planck-Institut für Kernphysik Heidelberg haben nun in Modellrechnungen untersucht, auf welchem Wege mittels extrem starker Lichtfelder Ionenstrahlen mit den für Hadrontherapie erforderlichen Eigenschaften erzeugt werden können. Kernpunkte sind dabei eine ausreichend große Beschleunigung für verfügbare Laserintensitäten sowie eine hohe Energieschärfe (besser als 1 %) für das Rasterscanverfahren. Bisherige Methoden der Beschleunigung in lasergenerierten extrem dichten Plasmen erreichen zwar schon recht hohe Energien sind aber mit breiten Energieverteilungen behaftet. Stattdessen wurde nun die direkte Beschleunigung von bereits erzeugten Ionen theoretisch modelliert.

Betrachtet wurden sowohl linear als auch radial polarisierte Laserstrahlen einer Leistung von 0,1 bis 10 Petawatt, die auf einen winzigen Brennpunkt gebündelt werden, der kleiner als die Wellenlänge des Lasers ist. Salamin, Harman und Keitel konnten zeigen, dass speziell das radial polarisierte Laserlicht (Axicon-Laser) besonders gute Beschleunigungseigenschaften besitzt. Solches Licht wurde zwar noch nicht in dem gewünschten Intensitätsbereich erzeugt, fundamentale Hindernisse stehen dem aber nicht entgegen.

ür Kohlenstoffkerne ergab sich bei 10 Petawatt Laserleistung eine maximale Energie von etwa 1500 MeV bei einer Energieschärfe von 0,8 %. Ionen, die von linear polarisierten Lasern beschleunigt werden, besitzen nahezu dieselben charakteristischen Strahleigenschaften. Ein weiterer Vorteil linear polarisierter Laser ist der rechteckförmige Querschnitt der erzeugten Strahlen, das zu einer gleichmäßigeren Tumorbestrahlung führt. Derartige Lasersysteme für die erforderlichen hohen Intensitäten sind bereits vorhanden.

Die Erforschung der Beschleunigungsmechanismen ist nur der erste Schritt. Eine wesentliche Herausforderung besteht in der Entwicklung geeigneter Quellen zur Erzeugung der zu beschleunigenden Ionen in der erforderlichen Dichte. Herkömmliche Ionenquellen und -strahlapparaturen sind davon noch viele Größenordnungen entfernt. Eine alternative Möglichkeit könnten Laser-Ionenquellen darstellen, in denen ein Laser zunächst ein Festkörpertarget ionisiert, um es dann mit dem eigentlichen Beschleunigungslaser zu bestrahlen.

Originalveröffentlichung:

Direct High-Power Laser Acceleration of Ions for Medical Applications
Yousef I. Salamin, Zoltán Harman, and Christoph H. Keitel
Phys. Rev. Lett. 100 (2008) 155004
Kontakt:
Dr. Zoltán Harman
Prof. Dr. Christoph H. Keitel
Max-Planck-Institut für Kernphysik, Heidelberg

Dr. Bernold Feuerstein | idw
Weitere Informationen:
http://www.mpi-hd.mpg.de
http://link.aps.org/abstract/PRL/v100/e155004
http://www.mpi-hd.mpg.de/keitel/ -

Weitere Berichte zu: Ion Laser

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Echtzeit-Feedback hilft Energie und Wasser sparen
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht Nutzung digitaler Technologien in der industriellen Produktion führt zu Produktivitätsvorteilen
01.02.2017 | Hochschule Karlsruhe - Technik und Wirtschaft

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: Hoch wirksamer Malaria-Impfstoff erfolgreich getestet

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Im Focus: Sensoren mit Adlerblick

Stuttgarter Forscher stellen extrem leistungsfähiges Linsensystem her

Adleraugen sind extrem scharf und sehen sowohl nach vorne, als auch zur Seite gut – Eigenschaften, die man auch beim autonomen Fahren gerne hätte. Physiker der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Welt der keramischen Werkstoffe - 4. März 2017

20.02.2017 | Veranstaltungen

Schwerstverletzungen verstehen und heilen

20.02.2017 | Veranstaltungen

ANIM in Wien mit 1.330 Teilnehmern gestartet

17.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Innovative Antikörper für die Tumortherapie

20.02.2017 | Medizin Gesundheit

Multikristalline Siliciumsolarzelle mit 21,9 % Wirkungsgrad – Weltrekord zurück am Fraunhofer ISE

20.02.2017 | Energie und Elektrotechnik

Wie Viren ihren Lebenszyklus mit begrenzten Mitteln effektiv sicherstellen

20.02.2017 | Biowissenschaften Chemie