Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Direkte Laser-Beschleunigung von Ionen für medizinische Anwendungen

01.08.2008
Forscher am Heidelberger Max-Planck-Institut für Kernphysik (MPIK) konnten in einer theoretischen Studie zeigen, dass mittels extrem stark fokussierter Petawatt-Laserstrahlen Ionen direkt auf Energien beschleunigt werden können, wie sie für eine Tumortherapie erforderlich sind.

Die Modellrechnungen ergaben ferner, dass die für den therapeutischen Einsatz geforderte Qualität der Ionenstrahlen für eine geeignet gewählte Polarisation des Laserlichts erreichbar ist. Falls es gelingt, die zu beschleunigenden Ionen in genügend großer Dichte bereitzustellen, könnte die Technik der Laserbeschleunigung in der Zukunft eine wesentlich kostengünstigere Alternative zu herkömmlichen Beschleunigersystemen darstellen.

Strahlen aus beschleunigten schweren geladenen Teilchen stehen inzwischen an mehreren Orten weltweit für die Tumortherapie (Hadrontherapie) zur Verfügung. Im Herbst dieses Jahres werden am neu fertig gestellten Heidelberger Ionenstrahl-Therapiezentrum (HIT) die ersten Patienten behandelt werden. Die besondere Eigenschaft dieser Teilchen, eine genau definierte Reichweite im Gewebe bei gegebener Energie, ermöglicht eine präzise Bestrahlung in einem Rasterscanverfahren.

Dieses schont das umgebende Gewebe und ermöglicht die Behandlung nicht operabler, kompliziert geformte bösartige Tumoren. Anlagen zur Hadrontherapie bestehen aus einem konventionellen Beschleuniger, welches die Ionen (in der Regel Protonen oder Kohlenstoffkerne) auf Energien von bis zu einigen 100 Megaelektronenvolt bringt und einem aufwendigen Strahlführungssystem (Gantry), welches eine Bestrahlung aus allen Raumrichtungen für das o. g. Rasterscanverfahren ermöglicht. Bedingt durch die hohe Energie und Masse der Teilchen benötigt man zu deren Ablenkung sehr starke Magnetfelder, weshalb ein typischer Gantry-Aufbau eine Masse von mehreren 100 Tonnen hat und zugleich den Strahl mit höchster Präzision justieren muss.

... mehr zu:
»Ion »Laser

Da dies einen nicht unerheblichen finanziellen Aufwand darstellt, gibt es Überlegungen, für die Zukunft weniger aufwendige, alternative Beschleunigungs- und Strahlführungssysteme zu entwickeln. Ein vielversprechender Ansatz ist die Beschleunigung geladener Teilchen in starken Laserfeldern, zumal die Lasertechnologie einen der dynamischsten Fortschritte in der gesamten Physik zu verzeichnen hat. So werden in naher Zukunft kompakte Anlagen mit Laserleistungen im Petawattbereich zur Verfügung stehen. Die Beschleunigung der Ionen könnte dann in unmittelbarer Nähe des Bestrahlungsplatzes aus der gewünschten Richtung erfolgen; die aufwendige magnetische Strahlführung würde durch ein erheblich leichteres optisches System für den Laserstrahl ersetzt.

Forscher der Gruppe von Christoph Keitel am Max-Planck-Institut für Kernphysik Heidelberg haben nun in Modellrechnungen untersucht, auf welchem Wege mittels extrem starker Lichtfelder Ionenstrahlen mit den für Hadrontherapie erforderlichen Eigenschaften erzeugt werden können. Kernpunkte sind dabei eine ausreichend große Beschleunigung für verfügbare Laserintensitäten sowie eine hohe Energieschärfe (besser als 1 %) für das Rasterscanverfahren. Bisherige Methoden der Beschleunigung in lasergenerierten extrem dichten Plasmen erreichen zwar schon recht hohe Energien sind aber mit breiten Energieverteilungen behaftet. Stattdessen wurde nun die direkte Beschleunigung von bereits erzeugten Ionen theoretisch modelliert.

Betrachtet wurden sowohl linear als auch radial polarisierte Laserstrahlen einer Leistung von 0,1 bis 10 Petawatt, die auf einen winzigen Brennpunkt gebündelt werden, der kleiner als die Wellenlänge des Lasers ist. Salamin, Harman und Keitel konnten zeigen, dass speziell das radial polarisierte Laserlicht (Axicon-Laser) besonders gute Beschleunigungseigenschaften besitzt. Solches Licht wurde zwar noch nicht in dem gewünschten Intensitätsbereich erzeugt, fundamentale Hindernisse stehen dem aber nicht entgegen.

ür Kohlenstoffkerne ergab sich bei 10 Petawatt Laserleistung eine maximale Energie von etwa 1500 MeV bei einer Energieschärfe von 0,8 %. Ionen, die von linear polarisierten Lasern beschleunigt werden, besitzen nahezu dieselben charakteristischen Strahleigenschaften. Ein weiterer Vorteil linear polarisierter Laser ist der rechteckförmige Querschnitt der erzeugten Strahlen, das zu einer gleichmäßigeren Tumorbestrahlung führt. Derartige Lasersysteme für die erforderlichen hohen Intensitäten sind bereits vorhanden.

Die Erforschung der Beschleunigungsmechanismen ist nur der erste Schritt. Eine wesentliche Herausforderung besteht in der Entwicklung geeigneter Quellen zur Erzeugung der zu beschleunigenden Ionen in der erforderlichen Dichte. Herkömmliche Ionenquellen und -strahlapparaturen sind davon noch viele Größenordnungen entfernt. Eine alternative Möglichkeit könnten Laser-Ionenquellen darstellen, in denen ein Laser zunächst ein Festkörpertarget ionisiert, um es dann mit dem eigentlichen Beschleunigungslaser zu bestrahlen.

Originalveröffentlichung:

Direct High-Power Laser Acceleration of Ions for Medical Applications
Yousef I. Salamin, Zoltán Harman, and Christoph H. Keitel
Phys. Rev. Lett. 100 (2008) 155004
Kontakt:
Dr. Zoltán Harman
Prof. Dr. Christoph H. Keitel
Max-Planck-Institut für Kernphysik, Heidelberg

Dr. Bernold Feuerstein | idw
Weitere Informationen:
http://www.mpi-hd.mpg.de
http://link.aps.org/abstract/PRL/v100/e155004
http://www.mpi-hd.mpg.de/keitel/ -

Weitere Berichte zu: Ion Laser

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Der Klang des Ozeans
12.01.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Verstädterung wird 300.000 km2 fruchtbarsten Ackerlands verschlingen
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

Leipziger Biogas-Fachgespräch lädt zum "Branchengespräch Biogas2020+" nach Nossen

11.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltweit erste Solarstraße in Frankreich eingeweiht

16.01.2017 | Energie und Elektrotechnik

Proteinforschung: Der Computer als Mikroskop

16.01.2017 | Biowissenschaften Chemie

Vermeintlich junger Stern entpuppt sich als galaktischer Greis

16.01.2017 | Physik Astronomie