Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Arbeitsgedächtnis: Zugrundeliegende Prozesse komplexer als gedacht

30.10.2015

Wenn Menschen eine Information für kurze Zeit im Kopf behalten, benötigen sie dafür das Arbeitsgedächtnis. Die zugrunde liegenden Prozesse sind deutlich komplexer als bislang gedacht, berichten Forscher der Ruhr-Universität Bochum und der Universität Bonn in der Zeitschrift „Cell Reports“. Zwei Gehirnzustände müssen sich rhythmisch abwechseln, um eine Information aufrechtzuerhalten.

Arbeitsgedächtnis: Neue Informationen für kurze Zeit speichern

Das Arbeitsgedächtnis ist immer dann gefragt, wenn wir uns eine neue Information für kurze Zeit merken wollen, zum Beispiel eine Telefonnummer. Verschiedene Hirnregionen sind daran beteiligt, unter anderem der Hippocampus, der auch entscheidend für das Langzeitgedächtnis ist.

Das Team um Prof. Dr. Nikolai Axmacher vom Bochumer Institut für Kognitive Neurowissenschaft und Marcin Leszczynski, Wissenschaftler in Bochum sowie in der Klinik für Epileptologie der Universität Bonn, untersuchte die Aktivitätsrhythmen im Hippocampus, während Menschen sich eine Reihe von Zahlen oder Gesichtern merkten.

Zwei Aktivitätszustände im Halbsekundentakt

Das Team arbeitete zu diesem Zweck mit Epilepsie-Patienten, die zur Operationsplanung Elektroden in den Hippocampus implantiert bekommen hatten. Diese Elektroden ermöglichen es, die Aktivität der tief im Gehirn liegenden Region zu messen.

Während sich die Patienten die Gesichter- oder Zahlenfolgen merkten, beobachteten die Forscher zwei Aktivitätszustände im Hippocampus, die sich zweimal pro Sekunde abwechselten: einen angeregten und einen weniger angeregten Zustand.

Scheinbar einfache Aufgaben erfordern hochkomplexe Prozesse

Trat das rhythmische Muster im Hippocampus nicht auf, neigten die Patienten dazu, Fehler in der Aufgabe zu machen. Anhand der Aktivitätsmuster konnten die Forscher außerdem schätzen, wie viele Ziffern oder Gesichter die Probanden sich verlässlich merken konnten.

„Die Ergebnisse zeigen, dass auch während scheinbar einfacher Aufgaben hochkomplexe Prozesse im Gehirn ablaufen“, sagt Prof. Nikolai Axmacher. „Unser Gefühl, ob etwas einfach oder kompliziert ist, ist kein verlässlicher Marker dafür, wie das Gehirn die Aufgaben tatsächlich löst.“

Titelaufnahme

M. Leszczyński, J. Fell, N. Axmacher (2015): Rhythmic working memory activation in the human hippocampus, Cell Reports, DOI: 10.1016/j.celrep.2015.09.081

Weitere Informationen

Prof. Dr. Nikolai Axmacher, Abteilung Neuropsychologie, Institut für Kognitive Neurowissenschaft, Ruhr-Universität Bochum, 44780 Bochum, Tel. 0234/32-22674, E-Mail: nikolai.axmacher@rub.de

Marcin Leszczyński, Klinik für Epileptologie, Universität Bonn, Tel. 0228/287-19344, E-Mail: leszczynski.marcin@gmail.com

Dr. Julia Weiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Wie gesund werden wir alt?
18.09.2017 | Medizinische Hochschule Hannover

nachricht Entrepreneurship-Studie: Großes Potential für Unternehmensgründungen in Deutschland
15.09.2017 | Alexander von Humboldt Institut für Internet und Gesellschaft

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie