Die Adolf Messer Stiftung fördert eine Studie am Institut für zelluläre und molekulare Anatomie

Eine experimentelle Studie am anatomischen Institut III im Zentrum für Morphologie des Klinikums der J.W. Goethe-Universität untersucht

die molekularen Mechanismen, die nach einem Schlaganfall oder anderen Formen der Hirnschädigung zum Untergang von Nervenzellen führen können.

Ziel ist es, die Zelltodmaschinerie aufzuklären und somit neue Möglichkeiten für die therapeutische Intervention beim Schlaganfall zu erarbeiten. Geleitet wird das laufende Forschungsprojekt von Prof. Dr. Abdelhaq Rami, wissenschaftlicher Mitarbeiter des Instituts für zelluläre und molekulare Anatomie (Dr. Senckenbergische Anatomie).

Das Forschungsprojekt mit dem Titel „Molekulare Mechanismen des autophagischen Zelluntergangs (Typ II Apoptose) nach der zerebralen Ischämie“ wird mit 81.000 Euro von der Adolf Messer Stiftung gefördert.

Nach einem Schlaganfall oder einer anderen akuten Art von Hirnschädigung kommt es zum Absterben von Nervenzellen im Gehirn. Es gibt verschiedene Arten des Zelltodes. Die Nekrose (Mord) galt lange Zeit als einzige Form des Zelluntergangs bis erste Hinweise für Apoptose (Selbstmord) präsentiert und inzwischen durch viele Arbeiten ergänzt wurden. Es lässt sich bisher auch noch nicht ausschließen, ob noch weitere Wege des Zelluntergangs entdeckt werden, die Charakteristika beider Todesarten gemeinsam aufweisen.

Welche „Form“ des Zelltodes nach einem Schlaganfall eintritt, hängt von einer Vielzahl von Faktoren ab. Im Gehirn wird häufig die sogenannte Autophagie (Selbstverzehr der Zelle) beobachtet. Diese ist unter normalen Umständen ein positiver Prozess innerhalb der Zelle, bei dem sie sich selbst reinigt. Ist eine Zelle bereits schwer geschädigt, leitet sie durch den Selbstverzehr ihre eigene Auflösung ein. Die Autophagie kommt dann in Gang, wenn defekte Zellen spezielle Signalproteine ausscheiden. Das Beseitigen und Zerlegen von intrazellulärem Material einschließlich der Abfallprodukte besorgen Zelleinheiten, die sogenannten Autophagosomen. Sie arbeiten wie kleine Roboterstaubsauger und befreien die Zellen von störendem „Müll“, das heißt von falsch gefalteten Proteinen und geschädigten Organellen. Man vermutet, dass die Autophagie die Zelle vor einer unnötigen Apoptose bewahren kann. Andererseits können Autophagie-Prozesse auch negative Konsequenzen haben – dann nämlich, wenn sie zu langsam, zu schnell oder anderweitig fehlerhaft ablaufen. Das heißt, dass in stark beschädigten Zellen der Selbstverzehr auch eine Form des Zelltodes darstellen kann. Dann nutzt die Zelle den Mechanismus, um sich vollständig aufzulösen.

Mit seiner Studie will Prof. Rami die biochemische Regulation der Autophagie in den Nervenzellen aufklären, also aufzeigen weshalb es zu Zellselbstzerstörungen kommen kann. Besonders interessiert er sich dabei für eine bestimmte Gengruppe, die „Autophagy-related Genes“ (ATGs), die Zelltode hervorrufen oder verhindern können.

Die Adolf Messer Stiftung wurde von der Familie zum Andenken an den Firmengründer der Messer GmbH gegründet und unterstützt wissenschaftliche Projekte.

Für weitere Informationen:
Prof. Dr. Abdelhaq Rami
Dr. Senckenbergische Anatomie
Institut für zelluläre und molekulare Anatomie (Anatomie III)
Klinikum der J.W. Goethe-Universität Frankfurt am Main
Fon: (069) 6301 – 69 29
Fax: (069) 6301 – 69 20
E-Mail: Rami@em.uni-frankfurt.de
Ricarda Wessinghage
Presse- und Öffentlichkeitsarbeit
Klinikum der J.W. Goethe-Universität Frankfurt am Main
Fon: (0 69) 63 01 – 77 64
Fax: (0 69) 63 01 – 8 32 22
E-Mail: ricarda.wessinghage@kgu.de

Media Contact

Ricarda Wessinghage idw

Alle Nachrichten aus der Kategorie: Studien Analysen

Hier bietet Ihnen der innovations report interessante Studien und Analysen u. a. aus den Bereichen Wirtschaft und Finanzen, Medizin und Pharma, Ökologie und Umwelt, Energie, Kommunikation und Medien, Verkehr, Arbeit, Familie und Freizeit.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer