Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Längere Laufzeiten für europäische Kernkraftwerke

10.01.2014
Im EU-Projekt LONGLIFE haben internationale Wissenschaftler Alterungseffekte in Reaktormaterialien untersucht. Auf einem abschließenden Workshop, der am 15. und 16. Januar 2014 im Helmholtz-Zentrum Dresden-Rossendorf (HZDR) stattfindet, präsentieren sie ihre Ergebnisse.

Rund um Deutschland entstehen neue Kernkraftwerke und werden die Laufzeiten für vorhandene Anlagen verlängert. Deshalb ist es wichtig, dass auch in Zukunft deutsche Experten die Sicherheit der Kernkraftwerke in unseren Nachbarländern bewerten können, unabhängig vom Ausstiegsbeschluss der deutschen Regierung.

So sind auch Wissenschaftler aus Deutschland an dem von der Europäischen Union mit rund 2,7 Mio. Euro geförderten Projekt LONGLIFE beteiligt. Die Projektpartner haben untersucht, wie Druckbehälter von Kernkraftwerken altern und präsentieren ihre Ergebnisse auf einem internationalen Workshop, an dem über 70 Experten aus aller Welt teilnehmen. Das EU-Projekt wurde vom Helmholtz-Zentrum Dresden-Rossendorf (HZDR) koordiniert.

Europäische Kernkraftwerke sind in der Regel für einen Betrieb von circa 40 Jahren ausgelegt. Unabhängig von der Energiewende und dem damit verbundenen Ausstiegsbeschluss in Deutschland werden weltweit die Voraussetzungen für längere Laufzeiten der Kernkraftwerke (60 bis 80 Jahre) geschaffen.

Auch bei längeren Laufzeiten dürfen Alterungseffekte in den Reaktormaterialien die Sicherheit der Kernkraftwerke nicht beeinträchtigen. Der Zustand der Werkstoffe wird daher regelmäßig überwacht. Im Laufe des Betriebs verändern die Reaktormaterialien durch die hochenergetische Neutronenstrahlung, die bei der Kernspaltung im Reaktor entsteht, allmählich ihre mechanischen Eigenschaften und verlieren an Zähigkeit – sie werden spröde. Dieser Versprödungseffekt wird durch die auf atomarer Ebene stattfindende Wechselwirkung der Neutronen mit dem Metallgitter der Werkstoffe hervorgerufen und spiegelt sich etwa im Bruchverhalten von Materialproben wider.

Bei längeren Laufzeiten sind die Materialien insgesamt einer höheren Neutronendosis ausgesetzt. Welchen Einfluss hat dies auf die Materialien? Sind die Verfahren und Vorhersagemodelle, mit denen die Versprödung bisher überwacht wird, auch für den Langzeitbetrieb von Kernkraftwerken geeignet oder müssen sie angepasst werden? Diese Fragen standen im Mittelpunkt des EU-Projektes LONGLIFE, an dem 16 Partner aus neun europäischen Ländern beteiligt gewesen sind.

Die Versprödung im Langzeitbetrieb wurde anhand einer Vielzahl unterschiedlich bestrahlter Materialproben, die von den Projektpartnern bereitgestellt wurden, untersucht. Dabei können die mechanischen Eigenschaften bestrahlter Werkstoffe nur in „heißen Zellen“, wie sie am HZDR vorhanden sind, getestet werden. Besonders interessiert sind die Forscher dabei an dem Einfluss, den die Intensität der Bestrahlung (der sogenannte Neutronenfluss) in einer bestimmten Zeit auf die Materialien hat. So zeigen Materialien, die über viele Jahre mit einem niedrigen Neutronenfluss bestrahlt wurden, andere Veränderungen auf atomarer Ebene als Werkstoffe, die über einen kürzeren Zeitraum einem hohen Neutronenfluss ausgesetzt waren. Dieser und andere für die Langzeitbestrahlung bedeutsamen Effekte können nun bei der Überwachung der Alterung der Materialien berücksichtigt werden. Eine entsprechende Richtlinie wurde im Rahmen von LONGLIFE erarbeitet.

Weitere Informationen:
Dr. Eberhard Altstadt
Institut für Ionenstrahlphysik und Materialforschung im HZDR
Tel.: 0351 260 - 2276
e.altstadt@hzdr.de
Medienkontakt:
Dr. Christine Bohnet | Pressesprecherin
Tel. 0351 260 - 2450 oder 0160 969 288 56 | c.bohnet@hzdr.de | www.hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf | Bautzner Landstr. 400 | 01328 Dresden
Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?

Zur Beantwortung dieser wissenschaftlichen Fragen werden Großgeräte mit einzigartigen Experimentiermöglichkeiten eingesetzt, die auch externen Nutzern zur Verfügung stehen.

Das HZDR ist seit 2011 Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat vier Standorte in Dresden, Leipzig, Freiberg und Grenoble und beschäftigt rund 1.000 Mitarbeiter – davon ca. 500 Wissenschaftler inklusive 150 Doktoranden.

Dr. Christine Bohnet | Helmholtz-Zentrum
Weitere Informationen:
http://www.hzdr.de

Weitere Nachrichten aus der Kategorie Seminare Workshops:

nachricht Am Einmaleins kommt keiner vorbei
22.09.2017 | Friedrich-Schiller-Universität Jena

nachricht Leicht aber robust entwickeln und konstruieren!
13.09.2017 | Haus der Technik e.V.

Alle Nachrichten aus der Kategorie: Seminare Workshops >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie