Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

ESA Workshop: Forscher ernten erste Erkenntnisse aus dem endgültigen GOCE Gravitationsmodell

26.11.2014

Nur vier Monate nach dem Eintreffen des letzten Datenpakets von der GOCE-Satellitenmission legen die Forscher eine reiche Ausbeute an wissenschaftlichen Erkenntnissen vor. Beendet sind die Arbeiten damit nicht – die Wissenschaftler erwarten sich eine ganze Reihe weiterer Resultate. Die Satellitenmission der Europäischen Weltraumorganisation (ESA), der Gravity Field and Steady-State Ocean Circulation Explorer (GOCE), lieferte die bislang genauesten Messungen des Gravitationsfeldes der Erde.

Das von der Technischen Universität München (TUM) koordinierte GOCE Gravity Consortium erzeugte sämtliche Datenprodukte der Mission, einschließlich des fünften und endgültigen GOCE-Schwerefeldmodells.


Geschwindigkeit des Golfstroms. Bild: TUM IAPG

Auf dieser Grundlage durchgeführte Arbeiten in den Fachgebieten Geophysik, Geologie, Meeresströmungen, Klimawandel und Bauwesen zeichnen ein präziseres Bild unseres dynamischen Planeten – wie das Programm des vom 25. bis 28. November in Paris stattfindenden 5. International GOCE User Workshop zeigt.

Von seinem Start im März 2009 bis zu seinem Wiedereintritt in die Atmosphäre im November 2013 umkreiste der GOCE-Satellit 27.000 mal die Erde. Er vermaß die winzigen Unterschiede im Schwerefeld, die die ungleichen Masseverteilung in den Ozeanen, Kontinenten und tief im Erdinneren widerspiegeln. Etwa 800 Millionen Beobachtungen flossen in die Berechnung des endgültigen Modells ein. Dieses besteht aus 75.000 Schwerefeldparametern und stellt das Gravitationsfeld mit einer räumlichen Auflösung von etwa 70 km dar.

Mit jeder Modellversion nahm die Zahl der zugrundeliegenden Daten und damit die Modellgenauigkeit weiter zu. Die Variationen des Geoids – die von der Schwerkraft bestimmte physikalische Figur der Erde, die als globale Bezugsgröße des Meeresspiegels und zur Angabe von Höhen dient – können nun mit auf Zentimeter genau angegeben werden – in einem Modell, das ausschließlich auf GOCE-Daten basiert.

Das fünfte und endgültige GOCE-Schwerefeldmodell profitiert zudem von zwei besonderen Beobachtungsphasen. Nach den ersten drei Betriebsjahren wurde die Umlaufbahn des Satelliten von 255 auf 225 km abgesenkt, um die Empfindlichkeit der Schwerkraftmessungen zu erhöhen und damit noch detailliertere Strukturen des Gravitationsfelds zu erfassen.

Zudem lieferten fast alle Instrumente während des kontrollierten Wiedereintritts in die Atmosphäre weiterhin Messungen. Sie riefen weit über die "Gravitationsgemeinde" hinaus großes Interesse hervor, beispielsweise bei Wissenschaftlern, die sich mit Luft- und Raumfahrttechnik, Atmosphärenforschung und Weltraumschrott befassen.

Es geht weiter: neue Wissenschaft, künftige Missionen

Durch die "Gravitationsbrille" können Forscher nun ein Bild unseres Planeten zeichnen, das die auf Licht, Magnetismus und seismischen Wellen beruhenden Darstellungen ergänzt. Wissenschaftler können die Geschwindigkeit der Meeresströmungen vom Weltraum aus bestimmen, das Ansteigen des Meeresspiegels und das Abschmelzen der Eisdecken verfolgen, verborgene Strukturen der kontinentalen Geologie aufdecken und sogar Einblick in die der Plattentektonik zugrunde liegenden Konvektionsmechanismen erhalten.

Der größte Teil der mehr als 100 Vorträge, die für den 5. GOCE User Workshop geplant sind, wird sich mit diesen Themen befassen, während Diskussionen technischer Art über Messungen und Modelle eine geringere Rolle spielen. "Ich werte es als Erfolg, dass sich der Schwerpunkt ganz klar auf die Seite der Anwender verlagert hat," sagt Prof. Roland Pail, Direktor des Instituts für Astronomische und Physikalische Geodäsie an der TUM.

Diese Verschiebung lässt sich auch deutlich an den von den TUM-Forschern behandelten Themen erkennen, wie zum Beispiel die auf dem GOCE-Gravitationsmodell beruhenden Berechnungen der elastischen Mächtigkeit der Kontinente, das aus dem Erdschwerefeld abgeleitete Abschmelzen von Eismassen in der Antarktis oder ein wissenschaftlicher Plan für die weltweite Vereinheitlichung nationaler Höhensysteme. Pail, der für die Bereitstellung derer Datenprodukte verantwortlich war, wird über die Konsolidierung der wissenschaftlichen Anforderungen für eine Gravitationsfeld-Mission der nächsten Generation sprechen.

Die TUM organisiert ein öffentliches Symposium mit dem Titel "Seeing Earth in the 'light' of gravity" für die Jahreskonferenz 2015 der American Association for the Advancement of Science im kalifornischen San Jose. Diese Teilveranstaltung mit Rednern aus Australien, Dänemark, Deutschland, Frankreich, Italien und Kanada findet 14. Februar 2015 statt. (http://meetings.aaas.org/)

Diese Forschungsarbeiten wurden zum Teil von der Europäischen Weltraumorganisation gefördert.

Publikation:
"EGM_TIM_RL05: An Independent Geoid with Centimeter Accuracy Purely Based on the GOCE Mission," Jan Martin Brockmann, Norbert Zehentner, Eduard Höck, Roland Pail, Ina Loth, Torsten Mayer-Gürr, und Wolf-Dieter Shuh. Geophysical Research Letters 2014, doi:10.1002/2014GL061904.

Kontakt:
Prof. Roland Pail
Institut für Astronomische und Physikalische Geodäsie
Technische Universität München
Tel: +49 89 289 23190
roland.pail@tum.de

Weitere Informationen:
http://www.iapg.bgu.tum.de/iapg.html
http://www.goce2014.org/


Weitere Informationen:

http://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/31922/

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Seminare Workshops:

nachricht Robuste Computer für's Auto
26.07.2017 | Haus der Technik e.V.

nachricht Läuft wie am Schnürchen!
26.07.2017 | Haus der Technik e.V.

Alle Nachrichten aus der Kategorie: Seminare Workshops >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops