Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zwei Wege führen aus dem Helium-Atom

11.11.2016

Ein Effekt, zwei verschiedene Wege: Im Fachjournal „Science“ präsentiert ein Forschungsteam mit Beteiligung der TU Wien, wie sich Quantenüberlagerungen im Helium-Atom auf extrem kurzen Zeitskalen aufbauen.

Es ist zweifellos das berühmteste Experiment in der Quantenphysik: Beim Doppelspaltversuch wird ein einzelnes Teilchen auf eine Platte mit zwei Öffnungen geschossen, und aufgrund seiner Quanteneigenschaften muss es sich nicht für eine der beiden Öffnungen entscheiden, es tritt durch beide gleichzeitig hindurch. Etwas Ähnliches lässt sich auch beobachten, wenn man einem Helium-Atom mit einem Laserpuls ein Elektron entreißt.


Ein direkter und ein indirekter Weg, das Atom zu ionisieren

TU Wien


Joachim Burgdörfer, Stefan Nagele, Stefan Donsa und Renate Pazourek (v.r.n.l)

TU Wien

So wie sich ein Teilchen gleichzeitig auf zwei Pfaden bewegt, kann Ionisation von Helium gleichzeitig über zwei verschiedene Prozesse ablaufen – und das lässt sich an ganz speziellen Überlagerungseffekten erkennen. Im Fall des Helium-Atoms handelt es sich dabei um sogenannte „Fano-Resonanzen“. Nun gelang es einem Team der TU Wien, des Max-Planck-Instituts für Kernphysik in Heidelberg und der Kansas State University, das Entstehen dieser Fano-Resonanzen direkt zu beobachten – obwohl dieser Effekt auf der Zeitskala von Femtosekunden abläuft.

Das Experiment wurde in Heidelberg durchgeführt, die Grundidee für das Experiment und komplexe Computersimulationen kamen von der TU Wien, weitere theoretische Beiträge lieferte die Kansas State University.

Direkter und indirekter Weg

Wenn ein Laserpuls das Helium-Atom trifft und ausreichend viel Energie auf eines der Elektronen überträgt, wird das Elektron einfach aus dem Atom herausgerissen. Es gibt allerdings noch eine zweite Möglichkeit, wie das Helium-Atom ionisiert werden kann – sie ist etwas komplizierter, wie Prof. Joachim Burgdörfer (Institut für Theoretische Physik, TU Wien) erklärt: „Wenn man beide Elektronen in einen höheren Energiezustand versetzt, dann kann eines davon wieder in den niedrigeren Energiezustand zurückkehren. Die dabei freiwerdende Energie kann auf das zweite Elektron übertragen werden, das damit schließlich das Atom verlässt.“
Das Endresultat beider Prozesse ist genau derselbe, beide verwandeln das neutrale Helium-Atom in ein Helium-Ion mit nur noch einem verbleibenden Elektron. So betrachtet sind beide Prozesse prinzipiell ununterscheidbar.

Fano-Resonanzen

„Quantenphysikalisch betrachtet kann jedes Atom beide Wege gleichzeitig beschreiten“, erklärt Renate Pazourek (TU Wien). „Genau das hinterlässt charakteristische Spuren.“ Wenn man das Licht untersucht, das von den Helium-Atomen absorbiert wird, dann erkennt man sogenannte Fano-Resonanzen – ein klares Zeichen dafür, dass hier der Endzustand auf zwei verschiedenen Wegen erreicht werden kann, einmal direkt und einmal indirekt.

Das lässt sich aber auch gezielt verhindern: Während des Ionisationsprozesses kann man den Zwischenschritt mit einem weiteren Laserstrahl ausschalten, dann gibt es nur noch den direkten Weg zur Ionisation und die Fano-Resonanz ist verschwunden. Das eröffnet nun eine neue Möglichkeit, den zeitlichen Ablauf des Prozesses zu studieren: Man erlaubt dem Atom zunächst, beide Wege gleichzeitig zu gehen, erst nach einer gewissen Zeit blockiert man den indirekten Weg. Je nachdem, wie lange beide Pfade gleichzeitig zugänglich waren, sind die Fano-Resonanzen stärker oder schwächer ausgeprägt.

Zusehen, wie Quanteneffekte entstehen

„Fano-Resonanzen konnte man schon in unterschiedlichen Systemen beobachten, sie spielen in der Atomphysik eine wichtige Rolle“, sagt Stefan Donsa (TU Wien). „Im Experiment konnten nun zum ersten Mal gezeigt werden, wie diese Resonanzen entstehen, wie man sie kontrollieren kann und wie sie sich im Lauf von Femtosekunden nach und nach aufbauen.“

„Die Zeitskalen, auf denen solche Quanten-Effekte ablaufen, sind so kurz, dass sie nach üblichen Zeitmaßstäben ganz plötzlich erscheinen, von einem Augenblick zum nächsten“, sagt Stefan Nagele. „Erst durch neue, aufwändige Methoden der Attosekundenphysik wird es heute möglich, den zeitlichen Ablauf solcher Vorgänge genau zu studieren.“

Das hilft nicht nur dabei, fundamentale Quanteneffekte besser zu verstehen, es liefert auch neue Möglichkeiten, in solche Abläufe einzugreifen und sie zu steuern – bis hin zu chemischen Reaktionen, die gezielt herbeigeführt oder unterdrückt werden können.

Originalpublikation: Observing the ultrafast build-up of a Fano resonance in the time domain, A. Kaldun et al., Science. (DOI: 10.1126/science.aah6972)

Wie groß das Interesse an diesen grundlegenden Effekten ist, zeigt auch, dass in derselben Ausgabe des Science-Magazins eine Arbeit von französischen und spanischen Forschern erscheint, welche eine komplementäre Methode der zeitaufgelösten Photoelektronen-Spektroskopie eingesetzt haben, um einen Blick „von außen“ auf die Fano-Resonanz des Atoms zu werfen (DOI: 10.1126/science.aah5188).

Rückfragehinweise:
Prof. Joachim Burgdörfer
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13610
joachim.burgdoerfer@tuwien.ac.at

Dr. Stefan Nagele
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13607
stefan.nagele@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Moleküle brillant beleuchtet
23.04.2018 | Max-Planck-Institut für Quantenoptik

nachricht Wie zerfallen kleinste Bleiteilchen?
23.04.2018 | Ernst-Moritz-Arndt-Universität Greifswald

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Metalle verbinden ohne Schweißen

Kieler Prototyp für neue Verbindungstechnik wird auf Hannover Messe präsentiert

Schweißen ist noch immer die Standardtechnik, um Metalle miteinander zu verbinden. Doch das aufwändige Verfahren unter hohen Temperaturen ist nicht überall...

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Moleküle brillant beleuchtet

23.04.2018 | Physik Astronomie

Sauber und effizient - Fraunhofer ISE präsentiert Wasserstofftechnologien auf Hannover Messe

23.04.2018 | HANNOVER MESSE

Fraunhofer IMWS entwickelt biobasierte Faser-Kunststoff-Verbunde für Leichtbau-Anwendungen

23.04.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics