Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nach dem Zusammenbruch - Wissenschaftler des Weizmann Instituts beobachten den bisher größten explodierenden Stern

23.03.2009
In einer ersten Beobachtung dieser Art konnten Wissenschaftler des Weizmann Instituts für Wissenschaft und der San Diego State University zuschauen, was passiert, wenn ein Stern, der fünfzigmal größer als die Sonne ist, explodiert. Während sie dieses unglaubliche Ereignis verfolgten, fanden sie heraus, dass die Masse des Sterns in sich zusammen brach, wodurch ein großes schwarzes Loch entstand.

Obwohl man die Explosion von Sternen - Supernovae - bereits sowohl mit blossem Auge als auch mit Hightech-Forschungssatelliten verfolgt hat, hat noch niemand direkt beobachtet, was passiert, wenn ein wirklich riesiger Stern kollabiert.

Dr. Avishay Gal-Yam aus dem Fachbereich Physik am Weizmann Institut und Prof. Douglas Leonard von der San Diego State University haben kürzlich die Masse eines gigantischen Sterns kurz vor seiner Explosion kalkuliert und danach die Explosion und ihre Nachwirkungen verfolgt. Ihre Forschungsergebnisse unterstützen die vorherrschende Theorie, dass Sterne, die mehr als zehn- bis hundertmal soviel Masse als unsere Sonne haben, als schwarzes Loch enden.

Das Ende eines Sterns wird von seiner Entstehung an von seiner Größe und von dem "Kraftwerk" bestimmt, das ihn während seiner Existenz leuchten läßt. Sterne - und dazu zählt auch unsere Sonne - werden von Wasserstoff-Kernen aufgeheizt, die aufgrund der starken Hitze und des Drucks im Innern des Kerns zu Helium verschmelzen. Ein Helium-Kern ist etwas leichter as die Summe der Masse der vier Wasserstoff-Kerne, die ihn entstehen ließen. Durch Einsteins Relativitättheorie (E=MC2) wissen wir, dass die fehlende Masse als Energie freigesetzt wird.

Wenn Sterne wie unsere Sonne ihren Wasserstoff-Treibstoff aufbrauchen, verbrennen sie relativ ruhig und verpuffen. Aber ein Stern, der achtfach oder gar noch weitaus größer als die Sonne ist, verschwindet auf weit dramatischere Weise. Eine Nuklearfusion geht auch nach Aufbrauch des Wasserstoffs weiter und produziert schwerere Elemente in den verschiedenen Schichten des Sterns. Wenn dieser Prozess bis zu dem Punkt voranschreitet, dass der Kern des Sterns sich in Eisen verwandelt, dominiert ein weiteres Phänomen: Die enorme Hitze und der große Druck im Zentrum des Sterns lassen den Eisenkern in seine Proton- und Neutronkomponenten zerspringen, woraufhin das Kerngehäuse und die Schicht darüber nach innen kollabieren und den Rest des Sternmaterials sehr rasch in einem Supernova-Blitz ins All abfeuern.

Eine Supernova setzt in wenigen Tagen mehr Energie frei als die Sonne dies in ihrer gesamten Lebenszeit tut und die Explosion ist so hell, dass sie hunderte von Lichtjahren entfernt sogar bei Tageslicht auf der Erde gesehen werden kann. Während die äußeren Schichten einer Supernova das Universum mit schillernden Feuerwerken aufhellen, fällt der Stern zunehmend mehr in sich zusammen. Die Schwerkraft, die bei diesem Kollaps entsteht, wird so stark, dass die Protonen und Elektronen zu Neutronen zusammengepresst werden und der Kern des Sterns wird von einem Umfang von 10.000 km Umfang auf einen von nur 10 km reduziert. Allein eine gefüllte Kiste mit Material dieses Sterns wiegt soviel wie die gesamte Erde. Aber wenn der explodierende Stern zwanzigmal mehr Masse als unsere Sonne oder gar mehr hat, sagen die Wissenschaftler, wird seine Gravitationskraft so mächtig, dass sogar Lichtwellen an einem Platz verbleiben. Solch ein Stern - ein schwarzes Loch - ist in jeder Hinsicht unsichtbar.

Bisher besaß keiner der Supernovae-Sterne, die Wissenschaftler messen konnten, mehr Masse als 20 Sonnen. Gal-Yam und Leonard betrachteten eine bestimmte Region im All mit Hilfe des Keck-Teleskops auf Mauna Kea in Hawaii und des Hubble-Space-Teleskops. Bei der Identifizierung des Sterns kurz vor seiner Explosion kalkulierten sie seine Masse als vergleichbar mit der von 50-100 Sonnen. Weitere Beobachtungen enthüllten, dass nur ein kleiner Teil der Sternmasse bei der Explosion abgestoßen wurde. Das meiste Material, sagt Gal-Yam, wurde mit steigender Gravitationskraft in den kollabierenden Kern gezogen. In nachfolgenden Teleskop-Abbildungen dieses Abschnitts im Himmel schien der Stern verschwunden zu sein, d.h. der Stern war nun ein schwarzes Loch geworden - so dicht, dass kein Licht entfliehen konnte.

Dr. Avishay Gal-Yams Forschungsarbeit wird finanziert von dem Nella and Leon Benoziyo Center for Astrophysics; dem Peter and Patricia Gruber Award, dem Legacy Heritage Fund und dem William Z. and Eda Bess Novick Young Scientist Fund.

Das Weizmann Institut in Rehovot, Israel, gehört weltweit zu den führenden multidisziplinären Forschungseinrichtungen. Seine 2600 Wissenschaftler, Studenten, Techniker und anderen Mitarbeiter sind in einem breiten Spektrum naturwissenschaftlicher Forschung tätig. Zu den Forschungszielen des Instituts gehören neue Möglichkeiten im Kampf gegen Krankheit und Hunger, die Untersuchung wichtiger Fragestellungen in Mathematik und Informatik, die Erforschung der Physik der Materie und des Universums und die Entwicklung neuer Werkstoffe und neuer Strategien für den Umweltschutz.

Die Nachrichten des Weizmann-Instituts sind im World Wide Web unter
http://www.wis-wander.weizmann.ac.il hinterlegt und ebenfalls unter http://www.eurekalert.org abrufbar

Batya Greenman | idw
Weitere Informationen:
http://www.wis-wander.weizmann.ac.il
http://wis-wander.weizmann.ac.il/site/en/weizman.asp?pi=371&doc_id=5513
http://www.eurekalert.org

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie