Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nach dem Zusammenbruch - Wissenschaftler des Weizmann Instituts beobachten den bisher größten explodierenden Stern

23.03.2009
In einer ersten Beobachtung dieser Art konnten Wissenschaftler des Weizmann Instituts für Wissenschaft und der San Diego State University zuschauen, was passiert, wenn ein Stern, der fünfzigmal größer als die Sonne ist, explodiert. Während sie dieses unglaubliche Ereignis verfolgten, fanden sie heraus, dass die Masse des Sterns in sich zusammen brach, wodurch ein großes schwarzes Loch entstand.

Obwohl man die Explosion von Sternen - Supernovae - bereits sowohl mit blossem Auge als auch mit Hightech-Forschungssatelliten verfolgt hat, hat noch niemand direkt beobachtet, was passiert, wenn ein wirklich riesiger Stern kollabiert.

Dr. Avishay Gal-Yam aus dem Fachbereich Physik am Weizmann Institut und Prof. Douglas Leonard von der San Diego State University haben kürzlich die Masse eines gigantischen Sterns kurz vor seiner Explosion kalkuliert und danach die Explosion und ihre Nachwirkungen verfolgt. Ihre Forschungsergebnisse unterstützen die vorherrschende Theorie, dass Sterne, die mehr als zehn- bis hundertmal soviel Masse als unsere Sonne haben, als schwarzes Loch enden.

Das Ende eines Sterns wird von seiner Entstehung an von seiner Größe und von dem "Kraftwerk" bestimmt, das ihn während seiner Existenz leuchten läßt. Sterne - und dazu zählt auch unsere Sonne - werden von Wasserstoff-Kernen aufgeheizt, die aufgrund der starken Hitze und des Drucks im Innern des Kerns zu Helium verschmelzen. Ein Helium-Kern ist etwas leichter as die Summe der Masse der vier Wasserstoff-Kerne, die ihn entstehen ließen. Durch Einsteins Relativitättheorie (E=MC2) wissen wir, dass die fehlende Masse als Energie freigesetzt wird.

Wenn Sterne wie unsere Sonne ihren Wasserstoff-Treibstoff aufbrauchen, verbrennen sie relativ ruhig und verpuffen. Aber ein Stern, der achtfach oder gar noch weitaus größer als die Sonne ist, verschwindet auf weit dramatischere Weise. Eine Nuklearfusion geht auch nach Aufbrauch des Wasserstoffs weiter und produziert schwerere Elemente in den verschiedenen Schichten des Sterns. Wenn dieser Prozess bis zu dem Punkt voranschreitet, dass der Kern des Sterns sich in Eisen verwandelt, dominiert ein weiteres Phänomen: Die enorme Hitze und der große Druck im Zentrum des Sterns lassen den Eisenkern in seine Proton- und Neutronkomponenten zerspringen, woraufhin das Kerngehäuse und die Schicht darüber nach innen kollabieren und den Rest des Sternmaterials sehr rasch in einem Supernova-Blitz ins All abfeuern.

Eine Supernova setzt in wenigen Tagen mehr Energie frei als die Sonne dies in ihrer gesamten Lebenszeit tut und die Explosion ist so hell, dass sie hunderte von Lichtjahren entfernt sogar bei Tageslicht auf der Erde gesehen werden kann. Während die äußeren Schichten einer Supernova das Universum mit schillernden Feuerwerken aufhellen, fällt der Stern zunehmend mehr in sich zusammen. Die Schwerkraft, die bei diesem Kollaps entsteht, wird so stark, dass die Protonen und Elektronen zu Neutronen zusammengepresst werden und der Kern des Sterns wird von einem Umfang von 10.000 km Umfang auf einen von nur 10 km reduziert. Allein eine gefüllte Kiste mit Material dieses Sterns wiegt soviel wie die gesamte Erde. Aber wenn der explodierende Stern zwanzigmal mehr Masse als unsere Sonne oder gar mehr hat, sagen die Wissenschaftler, wird seine Gravitationskraft so mächtig, dass sogar Lichtwellen an einem Platz verbleiben. Solch ein Stern - ein schwarzes Loch - ist in jeder Hinsicht unsichtbar.

Bisher besaß keiner der Supernovae-Sterne, die Wissenschaftler messen konnten, mehr Masse als 20 Sonnen. Gal-Yam und Leonard betrachteten eine bestimmte Region im All mit Hilfe des Keck-Teleskops auf Mauna Kea in Hawaii und des Hubble-Space-Teleskops. Bei der Identifizierung des Sterns kurz vor seiner Explosion kalkulierten sie seine Masse als vergleichbar mit der von 50-100 Sonnen. Weitere Beobachtungen enthüllten, dass nur ein kleiner Teil der Sternmasse bei der Explosion abgestoßen wurde. Das meiste Material, sagt Gal-Yam, wurde mit steigender Gravitationskraft in den kollabierenden Kern gezogen. In nachfolgenden Teleskop-Abbildungen dieses Abschnitts im Himmel schien der Stern verschwunden zu sein, d.h. der Stern war nun ein schwarzes Loch geworden - so dicht, dass kein Licht entfliehen konnte.

Dr. Avishay Gal-Yams Forschungsarbeit wird finanziert von dem Nella and Leon Benoziyo Center for Astrophysics; dem Peter and Patricia Gruber Award, dem Legacy Heritage Fund und dem William Z. and Eda Bess Novick Young Scientist Fund.

Das Weizmann Institut in Rehovot, Israel, gehört weltweit zu den führenden multidisziplinären Forschungseinrichtungen. Seine 2600 Wissenschaftler, Studenten, Techniker und anderen Mitarbeiter sind in einem breiten Spektrum naturwissenschaftlicher Forschung tätig. Zu den Forschungszielen des Instituts gehören neue Möglichkeiten im Kampf gegen Krankheit und Hunger, die Untersuchung wichtiger Fragestellungen in Mathematik und Informatik, die Erforschung der Physik der Materie und des Universums und die Entwicklung neuer Werkstoffe und neuer Strategien für den Umweltschutz.

Die Nachrichten des Weizmann-Instituts sind im World Wide Web unter
http://www.wis-wander.weizmann.ac.il hinterlegt und ebenfalls unter http://www.eurekalert.org abrufbar

Batya Greenman | idw
Weitere Informationen:
http://www.wis-wander.weizmann.ac.il
http://wis-wander.weizmann.ac.il/site/en/weizman.asp?pi=371&doc_id=5513
http://www.eurekalert.org

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

nachricht Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
20.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise