Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zoom auf die Sonne

09.05.2012
Das neue Teleskop Gregor soll das Tagesgestirn von Teneriffa aus mit bisher unerreichter Präzision beobachten

Teneriffa ist nicht nur ein Hotspot für Urlauber. Auch die Astronomen haben längst die Vorzüge der Kanareninsel entdeckt. So herrschen auf der Hochebene am Fuß des 3718 Meter hohen Vulkans Teide ideale Bedingungen für Himmelsbeobachtungen.


Die Sonne im Brennpunkt: Mit einem Spiegeldurchmesser von 1,5 Metern, adaptiver Optik und verschiedenen Instrumenten wie Spektrographen und Kameras gehört Gregor weltweit zu den drei leistungsfähigsten Teleskopen zur Beobachtung des Tagesgestirns. Kiepenheuer-Institut für Sonnenphysik


Das Observatorium im Hochhaus: Gregor steht unter der abklappbaren Kuppel auf dem Dach. Das Teleskop und die wissenschaftlichen Instrumente steuern die Forscher von einem Kontrollraum im dritten Stock des Gebäudes aus. Kiepenheuer-Institut für Sonnenphysik

Vor zehn Jahren begannen dort Forscher eines Konsortiums aus Kiepenheuer-Institut für Sonnenphysik, Astrophysikalischen Institut Potsdam, Institut für Astrophysik Göttingen, Max-Planck-Institut für Sonnensystemforschung sowie weitere internationale Partner mit dem Bau des Sonnenteleskops Gregor.

Der Name ist kein Akronym, sondern soll an James Gregory (1638 bis 1675) erinnern. Der schottische Mathematiker und Astronom hatte im 17. Jahrhundert ein Fernrohr entwickelt, in dem ein sekundärer konkaver Spiegel das reflektierte Licht des primären Parabolspiegels durch ein kleines Loch im Primärspiegel auf das Okular und damit ins Auge lenkt. Dieses optische Prinzip kommt auch bei dem neuen Teleskop auf Teneriffa zur Anwendung.

Allerdings wird kaum ein Wissenschaftler die Sonne mit Gregor direkt „in Augenschein“ nehmen, das erledigen elektronische Detektoren wie Spektrographen, Polari- und Interferometer sowie Kameras. Und auch sonst lässt sich das Hightech-Himmelsauge nicht mit der Konstruktion von James Gregory vergleichen. Das Teleskop ist vollständig in offener Bauweise angelegt, um Luftturbulenzen im Strahlengang zu vermeiden. Untergebracht ist es in einem Gebäude mit abklappbarer Kuppel.

Der 1,5 Meter durchmessende Hauptspiegel besteht aus der wärmeunempfindlichen Glaskeramik Zerodur und wird aktiv gekühlt, um eine Aufheizung der Vorderfläche des Spiegels durch absorbiertes Sonnenlicht zu vermeiden. Zwei weitere Spiegel haben die Ingenieure aus Siliciumcarbid (Cesic) gefertigt.

Gregor sieht mit einer adaptiven Optik besonders scharf: Über ein kompliziertes System von Aktuatoren und Spiegeln kompensiert das System die Schlieren innerhalb der Erdatmosphäre, die ständig das Bild der Sonne verzerren wie die wallenden Luftmassen, die über einer sommerlich-heißen Asphaltstraße flirren.

Ein rotierender Umlenkspiegel verteilt das durch die adaptive Optik erzeugte Strahlenbündel auf die verschiedenen Instrumente. Diese sollen in bisher nicht gekannter Präzision diverse physikalische Parameter der Sonne vermessen, insbesondere ihr Magnetfeld, und dabei noch 70 Kilometer kleine Strukturen offenbaren – ein angesichts der Sonnenentfernung von 150 Millionen Kilometer erstaunliches Auflösungsvermögen.

Das komplexe Magnetfeld spielt bei nahezu allen Prozessen in und auf dem brodelnden Gasball eine entscheidende Rolle. Es ist für die Energiebilanz der äußeren Atmosphärenschichten verantwortlich, es steckt hinter dem solaren Aktivitätszyklus (das Auftreten der Sonnenflecken folgt einem elfjährigen Rhythmus) und es produziert die meisten der manchmal spektakulären sichtbaren Phänomene: Protuberanzen, Flares, koronale Massenauswürfe und irdische Polarlichter.

Aus theoretischen Überlegungen und numerischen Berechnungen wissen die Forscher, dass sich die Wechselwirkungen zwischen dem solaren Plasma und dem Magnetfeld auf sehr kleinen räumlichen Skalen von etwa 70 Kilometer auf der Sonne vollziehen. Genau diese Auflösung wird Gregor erreichen.

Das Teleskop betrachtet das Tagesgestirn im sichtbaren und im infraroten Licht. Dabei nimmt es die Photosphäre in den Fokus – jene rund 300 Kilometer dünne Gasschicht, die uns als Sonnenoberfläche erscheint. Aber auch die darüber liegende Chromosphäre wollen die Forscher untersuchen. Sie erhoffen sich von Gregor ein besseres Verständnis der oben genannten solaren Phänomene. Schließlich sollen diese neuen Erkenntnisse dabei helfen, Materieausbrüche, die Satelliten im Weltraum oder irdische Stromnetze gefährden können, exakter vorherzusagen.

Gregor gehört zum Observatorio del Teide des Instituto Astrofisica des Canarias (IAC). Wenn das Teleskop am 21. Mai offiziell eingeweiht wird und danach seinen wissenschaftlichen Betrieb aufnimmt, hat es seine Feuerprobe schon hinter sich: Am 12. März 2009 hatte Gregor zum ersten Mal Sonnenlicht gesehen, damals noch mit einem Testspiegel von einem Meter Durchmesser.

So wird das Teleskop am Teide auf Teneriffa in den nächsten Jahren mit Sicherheit die Sonnenphysik erhellen – aber auch den klassischen Astronomen etwas bieten: Dank der hervorragenden optischen und mechanischen Eigenschaften wollen sie mit Gregor sonnenähnliche Sterne in langen Messreihen untersuchen, wie sie an anderen Nachtteleskopen nicht möglich sind.

Text: Helmut Hornung

Kontakt:

Dr. Birgit Krummheuer
Press and Public Relations
Max-Planck-Institut für Sonnensystemforschung
Telefon: +49 5556 979-462
Fax: +49 5556 979-240
E-Mail: presseinfo@­mps.mpg.de

Helmut Hornung | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/5191023/sonne
http://www.mpg.de/5774197/Krone_der_Sonne

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenmechanik ist komplex genug – vorerst …
21.04.2017 | Universität Wien

nachricht Tief im Inneren von M87
20.04.2017 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Phoenix Contact übernimmt Spezialisten für Netzleittechnik

24.04.2017 | Unternehmensmeldung

Phoenix Contact beteiligt sich an Berliner Start-up Unternehmen für Energiemanagement

24.04.2017 | Unternehmensmeldung

Phoenix Contact übernimmt Spezialisten für industrielle Kommunikationstechnik

24.04.2017 | Unternehmensmeldung