Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zeptosekunden-Stoppuhr für den Mikrokosmos

07.11.2016

Physiker der Ludwig-Maximilians-Universität und des Max-Planck Instituts für Quantenoptik haben erstmals ein inneratomares Geschehen mit einer Genauigkeit von Billionsteln einer Milliardstel Sekunde aufgezeichnet.

Wenn Licht auf Elektronen in Atomen trifft, dann verändert sich deren Zustand in unvorstellbar kurzen Zeiträumen. Ein solches Phänomen, nämlich das der Photoionisation, bei dem ein Elektron ein Heliumatom nach Lichtanregung verlässt, haben Laserphysiker der Ludwig-Maximilians-Universität (LMU) und des Max-Planck Instituts für Quantenoptik (MPQ) erstmals mit Zeptosekunden-Genauigkeit gemessen.


Nachdem ein Lichtteilchen ein Elektron aus einem Heliumatom entfernt hat, kann man die Aufenthaltswahrscheinlichkeiten des verbliebenen Elektrons berechnen.

Schultze/Ossiander

Eine Zeptosekunde ist ein Billionstel einer Milliardstel Sekunde (10-21 Sekunden). Das ist die höchste Genauigkeit der Zeitbestimmung eines Ereignisses im Mikrokosmos, die jemals erreicht wurde und zudem die erste absolute Bestimmung des Zeitpunktes der Photoionisation.

Trifft Licht auf die zwei Elektronen eines Heliumatoms, dann muss man unheimlich schnell sein um das Geschehen zu beobachten. Abgesehen von den ultrakurzen Zeiträumen, in denen sich Veränderungen abspielen, kommt die Quantenmechanik ins Spiel.

Trifft ein Lichtteilchen (Photon) auf die zwei Elektronen, kann es nämlich sein, dass die gesamte Energie des Photons entweder von dem einen Elektron aufgenommen wird oder aber dass eine Aufteilung stattfindet. In jedem Fall der Energieübertragung aber verlässt ein Elektron das Heliumatom. Diesen Vorgang nennt man Photoemission oder photoelektrischen Effekt. Albert Einstein hatte ihn Anfang des letzten Jahrhunderts entdeckt.

Von dem Zeitpunkt an, an dem das Photon mit den Elektronen wechselwirkt ,bis zu dem Zeitpunkt, an dem ein Elektron das Atom verlässt, dauert es zwischen fünf und fünfzehn Attosekunden (1 as ist 10-18 Sekunden). Das haben die Physiker bereits vor einigen Jahren herausgefunden (Science, 25. Juni 2010).

Mit ihrer nun verbesserten Messmethode können die Laserphysiker das Geschehen bis auf 850 Zeptosekunden genau messen. Die Forscher schickten zur Anregung der Elektronen einen Attosekunden langen extrem ultravioletten Lichtblitz (XUV) auf ein Heliumatom. Gleichzeitig ließen sie einen zweiten infraroten Laserpuls auftreffen, der rund vier Femtosekunden dauerte (1fs ist 10-15 Sekunden). Sobald das Elektron durch die Anregung des XUV–Lichtblitzes das Atom verlassen hatte, wurde es vom infraroten Laserpuls erfasst.

Je nachdem wie gerade das elektromagnetische Feld dieses Pulses zum Zeitpunkt der Erfassung beschaffen war, wurde das Elektron beschleunigt oder abgebremst. Über diese Geschwindigkeitsveränderung konnten die Physiker mit Zeptosekunden-Genauigkeit die Photoemission erfassen. Zudem konnten die Forscher erstmals bestimmen, wie die Energie des einfallenden Photons sich auf die beiden Elektronen des Heliumatoms in wenigen Attosekunden vor der Emission eines Teilchens quantenmechanisch verteilt hatte.

„Das Verständnis dieser Vorgänge im Heliumatom bietet uns für künftige Experimente ein enorm verlässliche Basis“, erklärt Martin Schultze, der Leiter der Experimente am MPQ. Die Physiker konnten nämlich die Präzesion ihrer Experimente bis auf Zeptosekunden-Genauigkeit mit den theoretischen Vorhersagen ihrer Kollegen vom Institut für Theoretische Physik der TU Wien korrelieren.

Mit seinen zwei Elektronen ist Helium das einzige System, das sich vollständig quantenmechanisch berechnen lässt. Damit bietet es sich geradezu an, Theorie und Experiment unter einen Hut zu bringen. „Wir können jetzt in dem verschränkten System aus Elektron und ionisiertem Helium-Mutteratom aus unseren Messungen die komplette wellenmechanische Beschreibung des Systems ableiten“, sagt Schultze.

Mit ihren Metrologie-Experimenten in Zeptosekunden-Zeitdimensionen haben die Laserphysiker damit ein weiteres wichtiges Puzzlestück in der Quantenmechanik des Heliumatoms an die richtige Stelle manövriert und die Messgenauigkeit im Mikrokosmos erstmal in ganz neue Dimensionen vorangetrieben. Thorsten Naeser

Bildbeschreibung:
Nachdem ein Lichtteilchen ein Elektron aus einem Heliumatom entfernt hat, kann man die Aufenthaltswahrscheinlichkeiten des verbliebenen Elektrons berechnen. Je heller die Bereiche im Bild dargestellt sind desto wahrscheinlicher ist sein Aufenthaltsort rund um den hier nicht sichtbaren Atomkern. Bild: Schultze/Ossiander

Originalpublikation:
M. Ossiander, F. Siegrist, V. Shirvanyan, R. Pazourek, A. Sommer, T. Latka, A. Guggenmos, S. Nagele, J. Feist, J. Burgdörfer, R. Kienberger and M. Schultze
Attosecond correlation dynamics
Nature physics, 7. November 2016, doi: 10.1038/nphys3941

Weitere Informationen erhalten Sie von:
Dr. Martin Schultze
Max-Planck-Institut für Quantenoptik, Garching
Tel: +49 89 32905- 236
Fax: +49 89 32905-649
E-Mail: Martin.Schultze@mpq.mpg.de

Prof. Ferenc Krausz
Ludwig-Maximilians-Univ. München, Fakultät f. Physik
Max-Planck-Institut für Quantenoptik, Garching
Tel: +49 89 32905-612
E-Mail: krausz@lmu.de
http://www.attoworld.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ein neues Experiment zum Verständnis der Dunklen Materie
14.06.2018 | Max-Planck-Institut für Radioastronomie

nachricht Quanten-Übertragung auf Knopfdruck
14.06.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 in Shanghai

Die AchemAsia geht in ihr viertes Jahrzehnt und bricht auf zu neuen Ufern: Das International Expo and Innovation Forum for Sustainable Chemical Production findet vom 21. bis 23. Mai 2019 in Shanghai, China statt. Gleichzeitig erhält die Veranstaltung ein aktuelles Profil: Die elfte Ausgabe fokussiert auf Themen, die für Chinas Prozessindustrie besonders relevant sind, und legt den Schwerpunkt auf Nachhaltigkeit und Innovation.

1989 wurde die AchemAsia als Spin-Off der ACHEMA ins Leben gerufen, um die Bedürfnisse der sich damals noch entwickelnden Iindustrie in China zu erfüllen. Seit...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: Li-Fi erstmals für das industrielle Internet der Dinge getestet

Mit einer Abschlusspräsentation im BMW Werk München wurde das BMBF-geförderte Projekt OWICELLS erfolgreich abgeschlossen. Dabei wurde eine Li-Fi Kommunikation zu einem mobilen Roboter in einer 5x5m² Fertigungszelle demonstriert, der produktionsübliche Vorgänge durchführt (Teile schweißen, umlegen und prüfen). Die robuste, optische Drahtlosübertragung beruht auf räumlicher Diversität, d.h. Daten werden von mehreren LEDs und mehreren Photodioden gleichzeitig gesendet und empfangen. Das System kann Daten mit mehr als 100 Mbit/s und fünf Millisekunden Latenz übertragen.

Moderne Produktionstechniken in der Automobilindustrie müssen flexibler werden, um sich an individuelle Kundenwünsche anpassen zu können. Forscher untersuchen...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: ALMA entdeckt Trio von Baby-Planeten rund um neugeborenen Stern

Neuartige Technik, um die jüngsten Planeten in unserer Galaxis zu finden

Zwei unabhängige Astronomenteams haben mit ALMA überzeugende Belege dafür gefunden, dass sich drei junge Planeten im Orbit um den Säuglingsstern HD 163296...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Künstliche Intelligenz – Schafft der Mensch seine Arbeit ab?

15.06.2018 | Veranstaltungen

Internationale Konferenz zur Asteroidenforschung in Garching

13.06.2018 | Veranstaltungen

Meteoriteneinschläge und Spektralfarben: HITS bei Explore Science 2018

11.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics