Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zeitumkehr durch Kontrolle von magnetischen Wechselwirkungen

30.03.2015

In einer Veröffentlichung in Nature Communications haben Forscher am Max-Planck-Institut für Struktur und Dynamik der Materie die theoretische Grundlage für effizienteren Magnetspeicher gelegt.

In vielen Materialien entstehen makroskopische magnetische Eigenschaften, wenn sich mikroskopisch kleine Magnete im gesamten Festkörper in einem festgelegten Muster ausrichten. In einer Veröffentlichung in Nature Communications haben Johan Mentink, Karsten Balzer und Martin Eckstein von der Universität Hamburg am Center for Free-Electron Laser Science (CFEL) und dem Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) vorhergesagt, dass die Wechselwirkungen, die diese Ausrichtung verursachen, fast augenblicklich und reversibel unter Einfluss eines Laserimpulses verändert werden können.


Illustration der Zeitumkehr: Unter dem Einfluss eines periodischen elektrischen Feldes eines Lasers (gelb) verläuft die Evolution der Spins (rot) zeitlich rückwärts.

Grafik: J.M. Harms, MPSD

In Zukunft könnte dieser Effekt potentiell für die Entwicklung schnellerer Magnetspeicher verwendet werden. Zudem implizieren die Ergebnisse der Studie die überraschende Folgerung, dass die magnetische Dynamik unter dem Einfluss eines ausreichend starken Laserfeldes effektiv zeitlich rückwärts ablaufen kann.

Die stärksten Wechselwirkungen in magnetischen Materialien werden als Austauschwechselwirkungen bezeichnet, da sie durch den Austausch von Elektronen zwischen den einzelnen mikroskopischen Magneten, sogenannten Spins, verursacht werden. Ein Spin kann von seinem Nachbarn eine Kraftwirkung spüren, die bis zu hundert Mal größer ist als Magnetfelder, die im Labor erzeugt werden können.

Johan Mentink und seine Koautoren haben gezeigt, dass das elektrische Feld des Lasers die Elektronen während dieses Austauschprozesses beeinflussen und somit die Wechselwirkung verändern kann. Aufgrund der Stärke der Austauschwechselwirkungen lässt sich mittels dieses Ansatzes der Magnetismus auf den schnellstmöglichen Zeitskalen steuern, mit hoher Relevanz für technologische Anwendungen wie Magnetspeicher.

Obwohl bereits gezeigt wurde, dass die Austauschwechselwirkungen sehr schnell verändert werden können, wäre eine ultimative Kontrolle erst erreicht, wenn man die Wechselwirkungen reversibel stärken oder schwächen könnte, d.h., wenn das System nach dem Prozess wieder in seinen Ausgangszustand zurückkehrt. Diese Möglichkeit wurde nun gezeigt, indem das magnetische Material einem zeitlich periodischen elektrischen Feld ausgesetzt wurde, das ganz bewusst so abgestimmt wurde, um eine direkte Anregung der Elektronen zu vermeiden.

Bereits für das betrachtete Modellsystem zeigt diese Vorgehensweise eine reichhaltige Steuerungsmöglichkeit: die Austauschwechselwirkung kann verstärkt und geschwächt werden und sogar ihr Vorzeichen umkehren, also eine parallele Ausrichtung benachbarter Spins gegenüber einer antiparallelen Ausrichtung begünstigen.

Eine ziemlich überraschende Beobachtung der Studie ist, dass sich bei einer Änderung des Vorzeichens der Austauschwechselwirkung durch das periodische elektrische Laserfeld die zeitliche Entwicklung für die Spin-Dynamik umkehrt. Mentink: "Intuitiv erwartet man, dass ein Vorzeichenwechsel der Wechselwirkung eine schnelle Änderung des magnetischen Zustands bewirkt. Aber wir beobachten stattdessen, dass sich die Spins zurück zu ihrer ursprünglichen Ausrichtung entwickeln, ohne jegliches Anzeichen für einen veränderten magnetischen Zustand aufzuweisen". Daher haben unsere Studien nicht nur Relevanz für technologische Anwendungen, sondern auch für grundlegende Untersuchungen der Zeit-Umkehrbarkeit von Quantensystemen.

Ansprechpartner:

Prof. Dr. Martin Eckstein
Max-Planck-Institut für Struktur und Dynamik der Materie
Luruper Chaussee 149
22761 Hamburg / Germany
Tel.:+49 (0)40 8998-6270
Email:martin.eckstein@mpsd.cfel.de

Dr. Johan Mentink
Radboud University
Institute for Molecules and Materials
Heyendaalseweg 135
6525 AJ Nijmegen / The Netherlands
Tel.: +31 (0)24 3652903
Email: j.mentink@science.ru.nl

Originalpublikation:
Johan. H. Mentink, Karsten Balzer, and Martin Eckstein, "Ultrafast and reversible control of the exchange interaction in Mott insulators”, Nature Communications, 2015, DOI: 10.1038/ncomms7708

Weitere Informationen:

http://dx.doi.org/10.1038/ncomms7708 Originalpublikation
http://www.mpsd.mpg.de/forschung/cmdd/tcse Forschungsgruppe von Prof. Dr. Martin Eckstein
http://www.mpsd.mpg.de Max-Planck-Institut für Struktur und Dynamik der Materie

Dr. Joerg Harms | Max-Planck-Institut für Struktur und Dynamik der Materie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie