Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zeitumkehr durch Kontrolle von magnetischen Wechselwirkungen

30.03.2015

In einer Veröffentlichung in Nature Communications haben Forscher am Max-Planck-Institut für Struktur und Dynamik der Materie die theoretische Grundlage für effizienteren Magnetspeicher gelegt.

In vielen Materialien entstehen makroskopische magnetische Eigenschaften, wenn sich mikroskopisch kleine Magnete im gesamten Festkörper in einem festgelegten Muster ausrichten. In einer Veröffentlichung in Nature Communications haben Johan Mentink, Karsten Balzer und Martin Eckstein von der Universität Hamburg am Center for Free-Electron Laser Science (CFEL) und dem Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) vorhergesagt, dass die Wechselwirkungen, die diese Ausrichtung verursachen, fast augenblicklich und reversibel unter Einfluss eines Laserimpulses verändert werden können.


Illustration der Zeitumkehr: Unter dem Einfluss eines periodischen elektrischen Feldes eines Lasers (gelb) verläuft die Evolution der Spins (rot) zeitlich rückwärts.

Grafik: J.M. Harms, MPSD

In Zukunft könnte dieser Effekt potentiell für die Entwicklung schnellerer Magnetspeicher verwendet werden. Zudem implizieren die Ergebnisse der Studie die überraschende Folgerung, dass die magnetische Dynamik unter dem Einfluss eines ausreichend starken Laserfeldes effektiv zeitlich rückwärts ablaufen kann.

Die stärksten Wechselwirkungen in magnetischen Materialien werden als Austauschwechselwirkungen bezeichnet, da sie durch den Austausch von Elektronen zwischen den einzelnen mikroskopischen Magneten, sogenannten Spins, verursacht werden. Ein Spin kann von seinem Nachbarn eine Kraftwirkung spüren, die bis zu hundert Mal größer ist als Magnetfelder, die im Labor erzeugt werden können.

Johan Mentink und seine Koautoren haben gezeigt, dass das elektrische Feld des Lasers die Elektronen während dieses Austauschprozesses beeinflussen und somit die Wechselwirkung verändern kann. Aufgrund der Stärke der Austauschwechselwirkungen lässt sich mittels dieses Ansatzes der Magnetismus auf den schnellstmöglichen Zeitskalen steuern, mit hoher Relevanz für technologische Anwendungen wie Magnetspeicher.

Obwohl bereits gezeigt wurde, dass die Austauschwechselwirkungen sehr schnell verändert werden können, wäre eine ultimative Kontrolle erst erreicht, wenn man die Wechselwirkungen reversibel stärken oder schwächen könnte, d.h., wenn das System nach dem Prozess wieder in seinen Ausgangszustand zurückkehrt. Diese Möglichkeit wurde nun gezeigt, indem das magnetische Material einem zeitlich periodischen elektrischen Feld ausgesetzt wurde, das ganz bewusst so abgestimmt wurde, um eine direkte Anregung der Elektronen zu vermeiden.

Bereits für das betrachtete Modellsystem zeigt diese Vorgehensweise eine reichhaltige Steuerungsmöglichkeit: die Austauschwechselwirkung kann verstärkt und geschwächt werden und sogar ihr Vorzeichen umkehren, also eine parallele Ausrichtung benachbarter Spins gegenüber einer antiparallelen Ausrichtung begünstigen.

Eine ziemlich überraschende Beobachtung der Studie ist, dass sich bei einer Änderung des Vorzeichens der Austauschwechselwirkung durch das periodische elektrische Laserfeld die zeitliche Entwicklung für die Spin-Dynamik umkehrt. Mentink: "Intuitiv erwartet man, dass ein Vorzeichenwechsel der Wechselwirkung eine schnelle Änderung des magnetischen Zustands bewirkt. Aber wir beobachten stattdessen, dass sich die Spins zurück zu ihrer ursprünglichen Ausrichtung entwickeln, ohne jegliches Anzeichen für einen veränderten magnetischen Zustand aufzuweisen". Daher haben unsere Studien nicht nur Relevanz für technologische Anwendungen, sondern auch für grundlegende Untersuchungen der Zeit-Umkehrbarkeit von Quantensystemen.

Ansprechpartner:

Prof. Dr. Martin Eckstein
Max-Planck-Institut für Struktur und Dynamik der Materie
Luruper Chaussee 149
22761 Hamburg / Germany
Tel.:+49 (0)40 8998-6270
Email:martin.eckstein@mpsd.cfel.de

Dr. Johan Mentink
Radboud University
Institute for Molecules and Materials
Heyendaalseweg 135
6525 AJ Nijmegen / The Netherlands
Tel.: +31 (0)24 3652903
Email: j.mentink@science.ru.nl

Originalpublikation:
Johan. H. Mentink, Karsten Balzer, and Martin Eckstein, "Ultrafast and reversible control of the exchange interaction in Mott insulators”, Nature Communications, 2015, DOI: 10.1038/ncomms7708

Weitere Informationen:

http://dx.doi.org/10.1038/ncomms7708 Originalpublikation
http://www.mpsd.mpg.de/forschung/cmdd/tcse Forschungsgruppe von Prof. Dr. Martin Eckstein
http://www.mpsd.mpg.de Max-Planck-Institut für Struktur und Dynamik der Materie

Dr. Joerg Harms | Max-Planck-Institut für Struktur und Dynamik der Materie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Durchbruch mit einer Kette aus Goldatomen
17.02.2017 | Universität Konstanz

nachricht Zukunftsmusik: Neues Funktionsprinzip zur Erzeugung der „Dritten Harmonischen“
17.02.2017 | Laser Zentrum Hannover e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: Hoch wirksamer Malaria-Impfstoff erfolgreich getestet

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Im Focus: Sensoren mit Adlerblick

Stuttgarter Forscher stellen extrem leistungsfähiges Linsensystem her

Adleraugen sind extrem scharf und sehen sowohl nach vorne, als auch zur Seite gut – Eigenschaften, die man auch beim autonomen Fahren gerne hätte. Physiker der...

Im Focus: Weltweit genaueste und stabilste transportable optische Uhr

Optische Strontiumuhr der PTB in einem PKW-Anhänger – für geodätische Untersuchungen, weltweite Uhrenvergleiche und schließlich auch eine neue SI-Sekunde

Optische Uhren sind noch genauer als die Cäsium-Atomuhren, die gegenwärtig die Zeit „machen“. Außerdem benötigen sie nur ein Hundertstel der Messdauer, um eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

ANIM in Wien mit 1.330 Teilnehmern gestartet

17.02.2017 | Veranstaltungen

Ökologischer Landbau: Experten diskutieren Beitrag zum Grundwasserschutz

17.02.2017 | Veranstaltungen

Von DigiCash bis Bitcoin

16.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Stammzellen verlassen Blutgefäße in strömungsarmen Zonen des Knochenmarks

17.02.2017 | Biowissenschaften Chemie

LODENFREY setzt auf das Workforce Mangement von GFOS

17.02.2017 | Unternehmensmeldung

50 Jahre JULABO : Erfahrung – Können & Weiterentwicklung!

17.02.2017 | Unternehmensmeldung