Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zeitumkehr durch Kontrolle von magnetischen Wechselwirkungen

30.03.2015

In einer Veröffentlichung in Nature Communications haben Forscher am Max-Planck-Institut für Struktur und Dynamik der Materie die theoretische Grundlage für effizienteren Magnetspeicher gelegt.

In vielen Materialien entstehen makroskopische magnetische Eigenschaften, wenn sich mikroskopisch kleine Magnete im gesamten Festkörper in einem festgelegten Muster ausrichten. In einer Veröffentlichung in Nature Communications haben Johan Mentink, Karsten Balzer und Martin Eckstein von der Universität Hamburg am Center for Free-Electron Laser Science (CFEL) und dem Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) vorhergesagt, dass die Wechselwirkungen, die diese Ausrichtung verursachen, fast augenblicklich und reversibel unter Einfluss eines Laserimpulses verändert werden können.


Illustration der Zeitumkehr: Unter dem Einfluss eines periodischen elektrischen Feldes eines Lasers (gelb) verläuft die Evolution der Spins (rot) zeitlich rückwärts.

Grafik: J.M. Harms, MPSD

In Zukunft könnte dieser Effekt potentiell für die Entwicklung schnellerer Magnetspeicher verwendet werden. Zudem implizieren die Ergebnisse der Studie die überraschende Folgerung, dass die magnetische Dynamik unter dem Einfluss eines ausreichend starken Laserfeldes effektiv zeitlich rückwärts ablaufen kann.

Die stärksten Wechselwirkungen in magnetischen Materialien werden als Austauschwechselwirkungen bezeichnet, da sie durch den Austausch von Elektronen zwischen den einzelnen mikroskopischen Magneten, sogenannten Spins, verursacht werden. Ein Spin kann von seinem Nachbarn eine Kraftwirkung spüren, die bis zu hundert Mal größer ist als Magnetfelder, die im Labor erzeugt werden können.

Johan Mentink und seine Koautoren haben gezeigt, dass das elektrische Feld des Lasers die Elektronen während dieses Austauschprozesses beeinflussen und somit die Wechselwirkung verändern kann. Aufgrund der Stärke der Austauschwechselwirkungen lässt sich mittels dieses Ansatzes der Magnetismus auf den schnellstmöglichen Zeitskalen steuern, mit hoher Relevanz für technologische Anwendungen wie Magnetspeicher.

Obwohl bereits gezeigt wurde, dass die Austauschwechselwirkungen sehr schnell verändert werden können, wäre eine ultimative Kontrolle erst erreicht, wenn man die Wechselwirkungen reversibel stärken oder schwächen könnte, d.h., wenn das System nach dem Prozess wieder in seinen Ausgangszustand zurückkehrt. Diese Möglichkeit wurde nun gezeigt, indem das magnetische Material einem zeitlich periodischen elektrischen Feld ausgesetzt wurde, das ganz bewusst so abgestimmt wurde, um eine direkte Anregung der Elektronen zu vermeiden.

Bereits für das betrachtete Modellsystem zeigt diese Vorgehensweise eine reichhaltige Steuerungsmöglichkeit: die Austauschwechselwirkung kann verstärkt und geschwächt werden und sogar ihr Vorzeichen umkehren, also eine parallele Ausrichtung benachbarter Spins gegenüber einer antiparallelen Ausrichtung begünstigen.

Eine ziemlich überraschende Beobachtung der Studie ist, dass sich bei einer Änderung des Vorzeichens der Austauschwechselwirkung durch das periodische elektrische Laserfeld die zeitliche Entwicklung für die Spin-Dynamik umkehrt. Mentink: "Intuitiv erwartet man, dass ein Vorzeichenwechsel der Wechselwirkung eine schnelle Änderung des magnetischen Zustands bewirkt. Aber wir beobachten stattdessen, dass sich die Spins zurück zu ihrer ursprünglichen Ausrichtung entwickeln, ohne jegliches Anzeichen für einen veränderten magnetischen Zustand aufzuweisen". Daher haben unsere Studien nicht nur Relevanz für technologische Anwendungen, sondern auch für grundlegende Untersuchungen der Zeit-Umkehrbarkeit von Quantensystemen.

Ansprechpartner:

Prof. Dr. Martin Eckstein
Max-Planck-Institut für Struktur und Dynamik der Materie
Luruper Chaussee 149
22761 Hamburg / Germany
Tel.:+49 (0)40 8998-6270
Email:martin.eckstein@mpsd.cfel.de

Dr. Johan Mentink
Radboud University
Institute for Molecules and Materials
Heyendaalseweg 135
6525 AJ Nijmegen / The Netherlands
Tel.: +31 (0)24 3652903
Email: j.mentink@science.ru.nl

Originalpublikation:
Johan. H. Mentink, Karsten Balzer, and Martin Eckstein, "Ultrafast and reversible control of the exchange interaction in Mott insulators”, Nature Communications, 2015, DOI: 10.1038/ncomms7708

Weitere Informationen:

http://dx.doi.org/10.1038/ncomms7708 Originalpublikation
http://www.mpsd.mpg.de/forschung/cmdd/tcse Forschungsgruppe von Prof. Dr. Martin Eckstein
http://www.mpsd.mpg.de Max-Planck-Institut für Struktur und Dynamik der Materie

Dr. Joerg Harms | Max-Planck-Institut für Struktur und Dynamik der Materie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Maschinelles Lernen im Quantenlabor
19.01.2018 | Universität Innsbruck

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungsnachrichten

Maschinelles Lernen im Quantenlabor

19.01.2018 | Physik Astronomie

Warum es für Pflanzen gut sein kann auf Sex zu verzichten

19.01.2018 | Biowissenschaften Chemie