Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zeitumkehr durch Kontrolle von magnetischen Wechselwirkungen

30.03.2015

In einer Veröffentlichung in Nature Communications haben Forscher am Max-Planck-Institut für Struktur und Dynamik der Materie die theoretische Grundlage für effizienteren Magnetspeicher gelegt.

In vielen Materialien entstehen makroskopische magnetische Eigenschaften, wenn sich mikroskopisch kleine Magnete im gesamten Festkörper in einem festgelegten Muster ausrichten. In einer Veröffentlichung in Nature Communications haben Johan Mentink, Karsten Balzer und Martin Eckstein von der Universität Hamburg am Center for Free-Electron Laser Science (CFEL) und dem Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) vorhergesagt, dass die Wechselwirkungen, die diese Ausrichtung verursachen, fast augenblicklich und reversibel unter Einfluss eines Laserimpulses verändert werden können.


Illustration der Zeitumkehr: Unter dem Einfluss eines periodischen elektrischen Feldes eines Lasers (gelb) verläuft die Evolution der Spins (rot) zeitlich rückwärts.

Grafik: J.M. Harms, MPSD

In Zukunft könnte dieser Effekt potentiell für die Entwicklung schnellerer Magnetspeicher verwendet werden. Zudem implizieren die Ergebnisse der Studie die überraschende Folgerung, dass die magnetische Dynamik unter dem Einfluss eines ausreichend starken Laserfeldes effektiv zeitlich rückwärts ablaufen kann.

Die stärksten Wechselwirkungen in magnetischen Materialien werden als Austauschwechselwirkungen bezeichnet, da sie durch den Austausch von Elektronen zwischen den einzelnen mikroskopischen Magneten, sogenannten Spins, verursacht werden. Ein Spin kann von seinem Nachbarn eine Kraftwirkung spüren, die bis zu hundert Mal größer ist als Magnetfelder, die im Labor erzeugt werden können.

Johan Mentink und seine Koautoren haben gezeigt, dass das elektrische Feld des Lasers die Elektronen während dieses Austauschprozesses beeinflussen und somit die Wechselwirkung verändern kann. Aufgrund der Stärke der Austauschwechselwirkungen lässt sich mittels dieses Ansatzes der Magnetismus auf den schnellstmöglichen Zeitskalen steuern, mit hoher Relevanz für technologische Anwendungen wie Magnetspeicher.

Obwohl bereits gezeigt wurde, dass die Austauschwechselwirkungen sehr schnell verändert werden können, wäre eine ultimative Kontrolle erst erreicht, wenn man die Wechselwirkungen reversibel stärken oder schwächen könnte, d.h., wenn das System nach dem Prozess wieder in seinen Ausgangszustand zurückkehrt. Diese Möglichkeit wurde nun gezeigt, indem das magnetische Material einem zeitlich periodischen elektrischen Feld ausgesetzt wurde, das ganz bewusst so abgestimmt wurde, um eine direkte Anregung der Elektronen zu vermeiden.

Bereits für das betrachtete Modellsystem zeigt diese Vorgehensweise eine reichhaltige Steuerungsmöglichkeit: die Austauschwechselwirkung kann verstärkt und geschwächt werden und sogar ihr Vorzeichen umkehren, also eine parallele Ausrichtung benachbarter Spins gegenüber einer antiparallelen Ausrichtung begünstigen.

Eine ziemlich überraschende Beobachtung der Studie ist, dass sich bei einer Änderung des Vorzeichens der Austauschwechselwirkung durch das periodische elektrische Laserfeld die zeitliche Entwicklung für die Spin-Dynamik umkehrt. Mentink: "Intuitiv erwartet man, dass ein Vorzeichenwechsel der Wechselwirkung eine schnelle Änderung des magnetischen Zustands bewirkt. Aber wir beobachten stattdessen, dass sich die Spins zurück zu ihrer ursprünglichen Ausrichtung entwickeln, ohne jegliches Anzeichen für einen veränderten magnetischen Zustand aufzuweisen". Daher haben unsere Studien nicht nur Relevanz für technologische Anwendungen, sondern auch für grundlegende Untersuchungen der Zeit-Umkehrbarkeit von Quantensystemen.

Ansprechpartner:

Prof. Dr. Martin Eckstein
Max-Planck-Institut für Struktur und Dynamik der Materie
Luruper Chaussee 149
22761 Hamburg / Germany
Tel.:+49 (0)40 8998-6270
Email:martin.eckstein@mpsd.cfel.de

Dr. Johan Mentink
Radboud University
Institute for Molecules and Materials
Heyendaalseweg 135
6525 AJ Nijmegen / The Netherlands
Tel.: +31 (0)24 3652903
Email: j.mentink@science.ru.nl

Originalpublikation:
Johan. H. Mentink, Karsten Balzer, and Martin Eckstein, "Ultrafast and reversible control of the exchange interaction in Mott insulators”, Nature Communications, 2015, DOI: 10.1038/ncomms7708

Weitere Informationen:

http://dx.doi.org/10.1038/ncomms7708 Originalpublikation
http://www.mpsd.mpg.de/forschung/cmdd/tcse Forschungsgruppe von Prof. Dr. Martin Eckstein
http://www.mpsd.mpg.de Max-Planck-Institut für Struktur und Dynamik der Materie

Dr. Joerg Harms | Max-Planck-Institut für Struktur und Dynamik der Materie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ein neues Experiment zum Verständnis der Dunklen Materie
14.06.2018 | Max-Planck-Institut für Radioastronomie

nachricht Quanten-Übertragung auf Knopfdruck
14.06.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 in Shanghai

Die AchemAsia geht in ihr viertes Jahrzehnt und bricht auf zu neuen Ufern: Das International Expo and Innovation Forum for Sustainable Chemical Production findet vom 21. bis 23. Mai 2019 in Shanghai, China statt. Gleichzeitig erhält die Veranstaltung ein aktuelles Profil: Die elfte Ausgabe fokussiert auf Themen, die für Chinas Prozessindustrie besonders relevant sind, und legt den Schwerpunkt auf Nachhaltigkeit und Innovation.

1989 wurde die AchemAsia als Spin-Off der ACHEMA ins Leben gerufen, um die Bedürfnisse der sich damals noch entwickelnden Iindustrie in China zu erfüllen. Seit...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: Li-Fi erstmals für das industrielle Internet der Dinge getestet

Mit einer Abschlusspräsentation im BMW Werk München wurde das BMBF-geförderte Projekt OWICELLS erfolgreich abgeschlossen. Dabei wurde eine Li-Fi Kommunikation zu einem mobilen Roboter in einer 5x5m² Fertigungszelle demonstriert, der produktionsübliche Vorgänge durchführt (Teile schweißen, umlegen und prüfen). Die robuste, optische Drahtlosübertragung beruht auf räumlicher Diversität, d.h. Daten werden von mehreren LEDs und mehreren Photodioden gleichzeitig gesendet und empfangen. Das System kann Daten mit mehr als 100 Mbit/s und fünf Millisekunden Latenz übertragen.

Moderne Produktionstechniken in der Automobilindustrie müssen flexibler werden, um sich an individuelle Kundenwünsche anpassen zu können. Forscher untersuchen...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: ALMA entdeckt Trio von Baby-Planeten rund um neugeborenen Stern

Neuartige Technik, um die jüngsten Planeten in unserer Galaxis zu finden

Zwei unabhängige Astronomenteams haben mit ALMA überzeugende Belege dafür gefunden, dass sich drei junge Planeten im Orbit um den Säuglingsstern HD 163296...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Simulierter Eingriff am virtuellen Herzen

18.06.2018 | Veranstaltungen

Künstliche Intelligenz – Schafft der Mensch seine Arbeit ab?

15.06.2018 | Veranstaltungen

Internationale Konferenz zur Asteroidenforschung in Garching

13.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Abwehrmechanismus gegen Sauerstoffradikale entdeckt

18.06.2018 | Biowissenschaften Chemie

Umwandlung von nicht-neuronalen Zellen in Nervenzellen

18.06.2018 | Biowissenschaften Chemie

Im Fußballfieber: Rittal Cup verspricht Spannung und Spaß

18.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics