Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zeitlich geordnete Photonenpaare

08.03.2012
Experimenteller Nachweis in der Resonanzemission von Quantenpunkten

Die kontrollierte Erzeugung von einzelnen Lichtquanten (Photonen) ist eine zentrale Voraussetzung für die künftige Datenübertragung in superschnellen Quantencomputern oder abhörsicheren Glasfaser-Kommunikationsnetzen.

Einen möglichen Ansatz hierzu bieten Halbleiter-Quantenpunkte (oft auch als „künstliche Atome“ bezeichnet), die zunächst mittels Laserlicht angeregt werden, um danach die Energie in Form genau eines Lichtquants wieder abzugeben und dabei in ihren Ausgangszustand zurückzukehren.

Photonen höchster Güte, in der Fachsprache von hoher Kohärenz, können speziell unter „resonanter“ Anregung erreicht werden. Hierbei wird der Laser genau auf den optischen Übergang des Quantenpunktes abgestimmt. Detaillierte Studien der so entstehenden Resonanzfluoreszenz sind ein Forschungsfeld des Teams von Prof. Peter Michler am Institut für Halbleiteroptik und Funktionelle Grenzflächen (IHFG) der Uni Stuttgart, das hierzu das Halbleitersystem Indium-Gallium-Arsenid untersucht. Anfang 2012 ist es den Forschern erstmals gelungen, die Resonanzfluoreszenz von einzelnen Halbleiter-Quantenpunkten im Regime eines „Dressed States“ quantenstatistisch im Detail zu studieren und dabei die Vorhersagen theoretischer Modelle zu verifizieren. *)

In der Theorie beschreibt ein „Dressed State“ den gemeinsamen Eigenzustand eines Zwei-Niveau-Quantenemitters (hier: Quantenpunktes) und des ihn umgebenden, wechselwirkenden Lichtfeldes (Laser) im Fall hoher Anregungsintensitäten. In diesem Fall können der Emitter und das Lichtfeld nicht mehr als einzelne Systeme betrachtet werden, sondern nur noch über einen gekoppelten Emitter-Licht-Zustand. Optische Übergänge zwischen den Zuständen („Dressed States“) einer so modifizierten Photonenquelle zeigen nicht mehr nur eine einzelne Frequenz der ausgesendeten Photonen, sondern weisen ein charakteristisch aufgespaltenes Drei-Linien-Spektrum („Mollow Triplet“) auf. Dieser Fingerabdruck der Resonanzfluoreszenz kann mittels hochauflösender Spektroskopie direkt beobachtet werden.

Die Forscher des IHFG konnten nun innerhalb des „Mollow Triplets“ einzelner Halbleiter-Quantenpunkte so genannte Zwei-Photonen-Kaskaden nachweisen. Durch kontrollierte leichte Verstimmung des anregenden intensiven Lasers gegenüber der Resonanz des Emitters präparierten sie einen Zustand, bei dem Photonen unterschiedlicher Energie aus den beiden Nebenbanden des „Mollow-Triplets“ in geordneter zeitliche Abfolge ausgesendet werden. In einer solchen Kaskade wird zum Beispiel abwechselnd ein hochenergetisches („blaues“) Photon, gefolgt von einem niederenergetischen („roten“) Photon erzeugt. Die zeitliche Reihenfolge wird dabei über die Verstimmung des Lasers kontrolliert und kann mit ihrer Hilfe sogar umgekehrt werden. Für den experimentellen Nachweis dieser Photonen-Kaskade wurde die Emissionsstatistik der Lichtquanten aus den beiden Nebenbanden des „Mollow Triplets“ direkt gemessen und im Detail untersucht. Die gewonnenen Ergebnisse zeigten dabei sehr gute Übereinstimmung mit den Vorhersagen der Quantentheorie.

Für eine zukünftige technologische Nutzung sind solche auf Resonanz-Fluoreszenz einzelner Quantenpunkte basierende Zwei-Photonen-Emitter deshalb interessant, weil ihre Lichtemission gegenüber bisherigen Konzepten deutlich verbesserte Kohärenzeigenschaften aufweist. Zu den möglichen Anwendungsfeldern derartiger Lichtquellen zählen zum Beispiel Protokolle zur sicheren Datenübertragung in der Quantenkommunikation oder auch Algorithmen des Quanten-Computings mit rein optischer Logik der Datenverarbeitung gegenüber herkömmlichen elektronischen Schaltkreisen heutiger Computersysteme. Sven Ulrich/amg

*) Über den Nachweis berichtete die Zeitschrift Nature Photonics im Februar 2012: http://dx.doi.org/ unter DOI: 10.1038/NPHOTON.2012.23

KONTAKT
Dr. Sven Ulrich
Institut für Halbleiteroptik und Funktionale Grenzflächen
Tel. 0711/685-65226
e-mail: s.ulrich@ihfg.uni-stuttgart.de

Andrea Mayer-Grenu | idw
Weitere Informationen:
http://www.uni-stuttgart.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Freie Elektronen in Sonnen-Protuberanzen untersucht
25.07.2017 | Georg-August-Universität Göttingen

nachricht Magnetische Quantenobjekte im "Nano-Eierkarton": PhysikerInnen bauen künstliche Fallen für Fluxonen
25.07.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie