Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zeit im Universum messen

06.02.2015

Bedeutende astrophysikalische Ereignisse in unserer Milchstraße können mithilfe radioaktiver Isotope zeitlich zugeordnet werden. ForscherInnen der Universität Wien, der Technischen Universität Wien, der Australian National University (ANU) und des Paul-Scherrer-Instituts in der Schweiz ist es gelungen, die Halbwertszeit des radioaktiven Eisen-60-Isotops genau zu bestimmen. Damit legen sie den Grundstein für eine präzise astronomische Uhr zur Erfassung von Zeitabläufen im Universum. Die Arbeit war Teil eines experimentellen Astrophysikprogramms an der Beschleunigeranlage VERA der Universität Wien und wurde zu einem Highlight des renommierten Fachjournals "Physical Review Letters" gewählt.

Das radioaktive Isotop Eisen-60 ist ideal dafür geeignet, als astrophysikalische Uhr Informationen über Supernovae, Elementbildung in Sternen und auch über das frühe Sonnensystem zu liefern. "Eisen-60 erlaubt es uns, die Bildung von chemischen Elementen in massiven Sternen sozusagen 'live' zu verfolgen.


Eine künstlerische Darstellung der Umgebung um eine Supernova-Explosion, in der auch frisch produziertes Eisen-60 ins interstellare Medium abgegeben wird.

Copyright: ESA/M. Kornmesser


Direktes Atome-Zählen von Eisen-60 mittels Beschleunigermassenspektrometrie (Australian National University). Jeder einzelne Punkt repräsentiert ein mit einem Teilchendetektor registriertes Atom.

Copyright: ANU/A. Wallner

Dafür benötigen wir jedoch eine genaue Kenntnis der Halbwertszeit – also der Lebensdauer dieses Isotops", erklärt Anton Wallner, der die aktuelle Studie an der Fakultät für Physik der Universität Wien und später als Gruppenleiter an der australischen Nationaluniversität (ANU) in Canberra geleitet hat.

Rätsel um langjährige Unstimmigkeit gelöst

Bisher gab es zwei stark voneinander abweichende Werte: Eine Messung aus dem Jahr 1984 besagt, dass die Halbwertszeit des Eisen-60-Isotops 1,5 Millionen Jahre beträgt, während eine Messung aus dem Jahr 2009 eine beinahe doppelt so lange Halbwertszeit ergab. Mit ihren jüngsten Experimenten bestätigen die ForscherInnen nun die Messungen aus dem Jahr 2009 und lösen somit das Rätsel um eine langjährige Unstimmigkeit auf diesem Gebiet.

Die genaue Halbwertszeit des radioaktiven Eisens-60 wurde nun auf 2,6 Millionen Jahre festgesetzt. Anton Wallner führt weiter aus: "Durch diese Erkenntnis lässt sich das Isotop nun als präzise kosmische Uhr, also als natürliches Archiv zur Erfassung von Zeitabläufen im Universum, verwenden".

Fingerzeig kosmischer Großereignisse

Das Eisen-60-Isotop kommt nicht natürlich auf unserer Erde vor. Es wird hauptsächlich in massereichen Sternen gebildet, die am Ende ihres Lebens als Supernovae explodieren und so radioaktive Elemente im Weltraum verteilen. Aufgrund der charakteristischen Strahlung, die die Isotope während ihres radioaktiven Zerfalls aussenden, kann es seit kurzem mit Satelliten direkt in unserer Milchstraße beobachtet werden. Diese Strahlung liefert Hinweise darauf, wie durch jüngste Supernovae neue Elemente entstanden sind.

"Findet man natürliche Eisen-60-Atome auf der Erde, so müssen diese aus erdnahen kosmischen Explosionen der letzten paar Millionen Jahre stammen. Derartige Ereignisse könnten Änderungen des Klimas auf der Erde bewirkt haben, erklärt Walter Kutschera vom VERA-Labor der Universität Wien. "Sogar die Geburt des Sonnensystems vor viereinhalb Milliarden Jahren könnte so ausgelöst worden sein, da man die Zerfallsprodukte von Eisen-60 in Meteoriten nachgewiesen hat.“

Präzise Messung an weltweit einzigartigen Beschleunigeranlagen

Da Eisen-60-Isotope langsam zerfallen, ist es eine Herausforderung ihre Halbwertszeit genau zu messen. Die WissenschafterInnen aus Österreich, Australien und der Schweiz verwendeten dazu "radioaktiven Abfall" aus einer Beschleunigeranlage des Paul Scherrer Instituts, in der eine ausreichende Menge an künstlich produziertem Eisen-60 enthalten war. Um die geringe Zahl an Atomen in der Probe genau zu bestimmen, nutzten sie eine besonders empfindliche Technik, mit der sich die Atome direkt zählen lassen.

Die Beschleunigeranlagen VERA (Vienna Environmental Research Accelerator) der Universität Wien und das Beschleuniger-Massenspektrometer der Australian National University zählen zu den weltweit sensitivsten Anlagen, um winzigste Spuren von seltenen Elementen nachzuweisen. "Das Besondere an unserer Arbeit ist, dass wir den Gehalt von Eisen-60 relativ zu einem weiteren radioaktiven Eisen-Isotop, nämlich Eisen-55, bestimmen konnten, welches genauer zu messen war“, so Wallner.

Die Ergebnisse der ForscherInnen wurden von den Herausgebern des renommierten Fachjournals Physical Review Letters zu einem "Highlight" gewählt und in weiteren Artikeln der American Physical Society und des IOP (Institute of Physics) vorgestellt.

Publikation in Physical Review Letters:
A. Wallner, M. Bichler, K. Buczak, R. Dressler, L.K. Fifield, D. Schumann, J.H. Sterba, S.G. Tims, G. Wallner, and W. Kutschera. Settling the Half-Life of 60Fe: Fundamental for a Versatile Astrophysical Chronometer. Physical Review Letters. 28. Jänner 2015.
DOI: http://dx.doi.org/10.1103/PhysRevLett.114.041101

Wissenschaftlicher Kontakt
emer. o. Univ.-Prof. Dr. Walter Kutschera
Isotopenforschung und Kernphysik
Universität Wien
1090 Wien, Währinger Straße 17
T +43-1-4277-517 59
walter.kutschera@univie.ac.at

Dr. Anton Wallner
Department of Nuclear Physics
The Australian National University
Research School of Physics and Engineering
ACT 0200, AUSTRALIA
T +61-2-6125-20 74
M +61-435-0619 17
anton.wallner@univie.ac.at

Rückfragehinweis
Stephan Brodicky
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 41
stephan.brodicky@univie.ac.at

Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 15 Fakultäten und vier Zentren arbeiten rund 9.700 MitarbeiterInnen, davon 6.900 WissenschafterInnen. Die Universität Wien ist damit auch die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 92.000 nationale und internationale Studierende inskribiert. Mit über 180 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. 1365 gegründet, feiert die Alma Mater Rudolphina Vindobonensis im Jahr 2015 ihr 650-jähriges Gründungsjubiläum. http://www.univie.ac.at

1365 gegründet, feiert die Alma Mater Rudolphina Vindobonensis im Jahr 2015 ihr 650-jähriges Gründungsjubiläum mit einem vielfältigen Jahresprogramm – unterstützt von zahlreichen Sponsoren und Kooperationspartnern. Die Universität Wien bedankt sich dafür bei ihren KooperationspartnerInnen, insbesondere bei: Österreichische Post AG, Raiffeisen NÖ-Wien, Bundesministerium für Wissenschaft, Forschung und Wirtschaft, Stadt Wien, Industriellenvereinigung, Erste Bank, Vienna Insurance Group, voestalpine, ÖBB Holding AG, Bundesimmobiliengesellschaft, Mondi. Medienpartner sind: ORF, Die Presse, Der Standard.

Stephan Brodicky | Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

nachricht Sind Zeitreisen physikalisch möglich?
26.06.2017 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblick ins geschlossene Enzym

26.06.2017 | Biowissenschaften Chemie

Laser – World of Photonics: Offene und flexible Montageplattform für optische Systeme

26.06.2017 | Messenachrichten

Biophotonische Innovationen auf der LASER World of PHOTONICS 2017

26.06.2017 | Messenachrichten