Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

ZARM-Experiment auf Höhenforschungsrakete

23.02.2012
Am 13. Februar 2012 um 10:30 Uhr MEZ startete die Höhenforschungsrakete Maser-12 vom Esrange Space Center unweit der nordschwedischen Stadt Kiruna ihren etwa sechsminütigen Flug im Dienste der Forschung unter Schwerelosigkeit.

Mit an Bord befand sich ein Experiment vom Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM), das untersucht, welche Prozesse im Falle der spontanen Erhitzung einer Flüssigkeit auftreten. Die Ergebnisse sollen einen ersten Anhaltspunkt zu der Frage liefern, was im Treibstofftank eines Raumfahrzeugs passiert, wenn dieser einer starken Wärmequelle ausgesetzt wird.

Das Experiment SOURCE 2 (Sounding Rocket Compere Experiment) ist das zweite innerhalb der Versuchsreihe der European Space Agency (ESA), in dem beobachtet wird, wie sich eine Testflüssigkeit in einem Behälter verhält, der extrem unterschiedliche Temperaturzonen hat. In sehr vereinfachter Form kennen wir die auftretenden Phänomene vom Wasserkochen in einem Kochtopf.

An der heißesten Stelle des Kochtopfs beginnt das Wasser zu sieden. Das heißt, beim Verdampfungsprozess bilden sich Blasen, die als heißer Dampf aus der Flüssigkeit aufsteigen. Ein Teil dieses heißen Dampfes trifft auf den kühleren Deckel des Kochtopfs, wo er wieder zu Wasser kondensiert.

Diese Verdampfungs- und Kondensationseffekte konnten nun unter Schwerelosigkeit beobachtet werden. Dazu wurde ein Glaszylinder am oberen Ende auf ca. 130°C erhitzt und am Boden mit Hilfe einer Kühlplatte auf 35°C gehalten. Nach dem Start der Maser-12-Rakete wurde der Zylinder mit kühler Testflüssigkeit (Hydrofluorether) und 150° C heißem Dampf desselben Stoffs befüllt. Aus dem Videomitschnitt wird sofort deutlich, dass sich dort, wo die Flüssigkeit die heißen Wände der Testzelle berührt, Blasen bilden. Durch die fehlende Gravitation steigen diese Blasen aber nicht auf, sondern werden von der vorherrschenden Strömung mitgenommen.

Von besonderem Interesse ist auch die Auswertung der Druckverhältnisse während des Experiments. Durch die Verdampfung der Flüssigkeit an der heißen Wand steigt der Druck im Innern des geschlossenen Zylinders. Durch die Kondensation des heißen Gases an der kühleren Flüssigkeit hingegen sinkt der Druck. Überraschenderweise konnte das ZARM-Team beobachten, dass der Einfluss der Kondensation stärker war als der Verdampfungseffekt - der Druck also abfiel anstatt zu steigen. Für die Frage, wie ein Treibstofftank im Weltraum auf eine kurzfristige, partielle Überhitzung reagiert und ob - oder auch wie lange - die Wechselwirkung von Verdampfung und Kondensation die Entstehung eines Überdrucks verhindert, ist dieses Ergebnis ein wichtiger Anhaltspunkt. Die Auswertung der gesamten Daten der dreiminütigen Versuchsphase wird voraussichtlich noch Monate dauern. Die ZARM-Wissenschaftler versprechen sich aber weitere wichtige Erkenntnisse für das Tankdesign zukünftiger Raketentriebwerke, die mit kryogenen Treibstoffen wie flüssigem Wasserstoff oder Sauerstoff betrieben werden.

Bereits im Mai 2008 konnten wertvolle sechs Minuten Experimentdauer unter Schwerelosigkeit auf der MASER-11 für das erste SOURCE-Experiment genutzt werden. Beide Experimente sind eingebunden in das „Microgravity Application Program“ der ESA. SOURCE 2 wurde in Zusammenarbeit mit Air Liquide Grenoble, Toulouse IMFT und EADS Astrium Bremen durchgeführt. Die Hardware und der Flug wurden von der European Space Agency (ESA) finanziert, das Wissenschaftlerteam des ZARM vom Deutschen Zentrum für Luft- und Raumfahrt (DLR).

Ansprechpartner bei inhaltlichen Fragen:
Prof. Dr.-Ing. Michael Dreyer
michael.dreyer@zarm.uni-bremen.de
0421 218-57866
Anprechpartnerin bei allgemeinen Presseanfragen:
Birgit Kinkeldey
birgit.kinkeldey@zarm.uni-bremen.de
0421 218-57755

Birgit Kinkeldey | idw
Weitere Informationen:
http://www.zarm.uni-bremen.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Auf dem Weg zur optischen Kernuhr
19.04.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Laser erzeugt Magnet – und radiert ihn wieder aus
18.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics