Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

XENON-Experiment: (noch) kein Hinweis auf Dunkle Materie

21.08.2015

Dunkle Materie wurde bislang noch nie direkt gemessen. Auch die internationale XENON-Kollaboration, an der Forschende der Universitäten Bern und Zürich beteiligt sind, fand bisher keinen Hinweis darauf. Ihre Ergebnisse erlauben es aber, eine seit Jahren schwelende wissenschaftliche Kontroverse aufzulösen.

Seit Jahrzehnten wird nach der Dunklen Materie gesucht, einem Hauptbestandteil des Universums. Bislang konnte sie nur indirekt, etwa durch ihre Wechselwirkung mit der Schwerkraft, beobachtet werden. Forschende des DAMA/LIBRA-Experiments behaupten aber, die enigmatischen Teilchen bereits seit 14 Jahren nachweisen zu können.


Der XENON100-Detektor ist eines der weltweit empfindlichsten Instrumente zur Suche nach Dunkler Materie.

XENON Collaboration

Neue Resultate des internationalen Forschungsprojekts XENON widersprechen jedoch diesen Beobachtungen: «Der XENON100-Detektor, den wir verwendet haben, gehört zu den weltweit präzisesten, dennoch war es uns nicht möglich, damit Dunkle Materie nachzuweisen», sagt Marc Schumann vom Berner Albert Einstein Center for Fundamental Physics. Schumann ist Ko-Autor zweier Studien zum Thema, die das Konsortium in den Fachzeitschriften «Science» und «Physical Review Letters» veröffentlicht hat.

Im Zentrum der Experimente steht die Annahme, dass sich Dunkle Materie durch Zusammenstösse mit Atomen des Materials, aus dem der Teilchendetektor besteht, bemerkbar machen soll. Zusätzlich sollte die Bewegung der Erde um die Sonne zu einer jahreszeitlichen Schwankung dieses Signals führen, wie Ko-Autorin Laura Baudis vom Physik Institut der Universität Zürich erläutert:

«Im Sommer werden mehr, im Winter weniger Ereignisse erwartet.» Das DAMA/LIBRA-Experiment hat mit seinem Natriumiodid-Detektor eine solche Schwankung gemessen. Diese als Dunkle-Materie-Signal zu interpretieren, stehe aber im Widerspruch zu den Ergebnissen anderer Experimente, so Baudis. Um diese Diskrepanz zu erklären, wurde postuliert, die Dunkle-Materie-Teilchen würden eventuell nicht wie erwartet mit den Atomkernen, sondern nur mit den Elektronen in der Atomhülle zusammenstossen und dadurch gestreut werden.

Geschützt durch 1400 Meter Fels

Da DAMA/LIBRA nicht zwischen Streuungen am Atomkern und an den Elektronen unterscheiden kann, haben die Forschenden des XENON-Konsortiums in ihren Daten nach Hinweisen darauf gesucht. Der XENON100-Detektor nutzt als Nachweismedium 62 Kilogramm flüssiges Xenon und misst die winzigen Ladungs- und Lichtsignale, die bei den seltenen Kollisionen von Dunkle-Materie-Teilchen mit Xenon-Atomen erwartet werden.

«Im Gegensatz zu DAMA/LIBRA kann XENON100 zwischen Streuung an Atomkernen und an Elektronen gut unterscheiden», erläutert Marc Schumann. Aufgebaut ist das Experiment im italienischen Gran-Sasso-Untergrund-Labor, wo die störende kosmische Strahlung durch 1400 Meter Fels reduziert wird.

Das XENON-Team hat seine Daten zur Streuung durch Elektronen sowie auf jahreszeitliche Schwankungen hin untersucht. Schumann: «Die Suche nach diesen Variationen zeigte keine signifikante Schwankung in den Daten über Zeiträume von bis zu 500 Tagen – im Widerspruch zu DAMA/LIBRA.» Die Forschenden haben zudem berechnet, wie das DAMA/LIBRA-Signal in ihrem Detektor aussehen würde, wenn es wirklich von Dunkle-Materie-Teilchen verursacht worden wäre.

Die Ergebnisse sind eindeutig, wie Laura Baudis sagt: «Wir haben kein Signal gesehen, nur das erwartete Hintergrundrauschen.» Somit hält keines der untersuchten Modelle der Überprüfung durch XENON100 stand, so das Fazit der Schweizer Forschenden. Folglich lasse sich das DAMA/LIBRA-Ergebnis auch nicht mit Dunkler Materie erklären, die nur von Elektronen gestreut wird.

«Netz noch nicht engmaschig genug»

Bedeuten die neuen Ergebnisse nun, dass Dunkle Materie am Ende gar nicht existiert? Marc Schumann verneint kategorisch: «Man muss sich Dunkle-Materie-Teilchen wie sehr kleine Fische im Meer vorstellen. Wir wissen, dass sie existieren, unsere Netze sind einfach noch nicht engmaschig genug, um sie einzufangen.»

Da XENON100 an der Grenze seiner Sensitivität angekommen ist, installiert das Forschungskonsortium im Moment einen rund 100 Mal empfindlicheren Detektor. Dieses Instrument, XENON1T, werde Ende des Jahres ein komplett neues Kapitel bei der Suche nach Dunkler Materie aufschlagen, so Laura Baudis. Die Forschenden der Universitäten Bern und Zürich sind auch an diesem Experiment beteiligt.

Angaben zur Publikation:

Exclusion of Leptophilic Dark Matter Models using XENON100 Electronic Recoil Data, XENON Collaboration, arXiv:1507.07747, Science (angenommen)

Search for Event Rate Modulation in XENON100 Electronic Recoil Data, XENON Collaboration, arXiv:1507.07748, Physical Review Letters (angenommen)

Weitere Informationen:

http://www.medienmitteilungen.unibe.ch

Nathalie Matter | Universität Bern

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften