Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

XENON-Experiment: (noch) kein Hinweis auf Dunkle Materie

21.08.2015

Dunkle Materie wurde bislang noch nie direkt gemessen. Auch die internationale XENON-Kollaboration, an der Forschende der Universitäten Bern und Zürich beteiligt sind, fand bisher keinen Hinweis darauf. Ihre Ergebnisse erlauben es aber, eine seit Jahren schwelende wissenschaftliche Kontroverse aufzulösen.

Seit Jahrzehnten wird nach der Dunklen Materie gesucht, einem Hauptbestandteil des Universums. Bislang konnte sie nur indirekt, etwa durch ihre Wechselwirkung mit der Schwerkraft, beobachtet werden. Forschende des DAMA/LIBRA-Experiments behaupten aber, die enigmatischen Teilchen bereits seit 14 Jahren nachweisen zu können.


Der XENON100-Detektor ist eines der weltweit empfindlichsten Instrumente zur Suche nach Dunkler Materie.

XENON Collaboration

Neue Resultate des internationalen Forschungsprojekts XENON widersprechen jedoch diesen Beobachtungen: «Der XENON100-Detektor, den wir verwendet haben, gehört zu den weltweit präzisesten, dennoch war es uns nicht möglich, damit Dunkle Materie nachzuweisen», sagt Marc Schumann vom Berner Albert Einstein Center for Fundamental Physics. Schumann ist Ko-Autor zweier Studien zum Thema, die das Konsortium in den Fachzeitschriften «Science» und «Physical Review Letters» veröffentlicht hat.

Im Zentrum der Experimente steht die Annahme, dass sich Dunkle Materie durch Zusammenstösse mit Atomen des Materials, aus dem der Teilchendetektor besteht, bemerkbar machen soll. Zusätzlich sollte die Bewegung der Erde um die Sonne zu einer jahreszeitlichen Schwankung dieses Signals führen, wie Ko-Autorin Laura Baudis vom Physik Institut der Universität Zürich erläutert:

«Im Sommer werden mehr, im Winter weniger Ereignisse erwartet.» Das DAMA/LIBRA-Experiment hat mit seinem Natriumiodid-Detektor eine solche Schwankung gemessen. Diese als Dunkle-Materie-Signal zu interpretieren, stehe aber im Widerspruch zu den Ergebnissen anderer Experimente, so Baudis. Um diese Diskrepanz zu erklären, wurde postuliert, die Dunkle-Materie-Teilchen würden eventuell nicht wie erwartet mit den Atomkernen, sondern nur mit den Elektronen in der Atomhülle zusammenstossen und dadurch gestreut werden.

Geschützt durch 1400 Meter Fels

Da DAMA/LIBRA nicht zwischen Streuungen am Atomkern und an den Elektronen unterscheiden kann, haben die Forschenden des XENON-Konsortiums in ihren Daten nach Hinweisen darauf gesucht. Der XENON100-Detektor nutzt als Nachweismedium 62 Kilogramm flüssiges Xenon und misst die winzigen Ladungs- und Lichtsignale, die bei den seltenen Kollisionen von Dunkle-Materie-Teilchen mit Xenon-Atomen erwartet werden.

«Im Gegensatz zu DAMA/LIBRA kann XENON100 zwischen Streuung an Atomkernen und an Elektronen gut unterscheiden», erläutert Marc Schumann. Aufgebaut ist das Experiment im italienischen Gran-Sasso-Untergrund-Labor, wo die störende kosmische Strahlung durch 1400 Meter Fels reduziert wird.

Das XENON-Team hat seine Daten zur Streuung durch Elektronen sowie auf jahreszeitliche Schwankungen hin untersucht. Schumann: «Die Suche nach diesen Variationen zeigte keine signifikante Schwankung in den Daten über Zeiträume von bis zu 500 Tagen – im Widerspruch zu DAMA/LIBRA.» Die Forschenden haben zudem berechnet, wie das DAMA/LIBRA-Signal in ihrem Detektor aussehen würde, wenn es wirklich von Dunkle-Materie-Teilchen verursacht worden wäre.

Die Ergebnisse sind eindeutig, wie Laura Baudis sagt: «Wir haben kein Signal gesehen, nur das erwartete Hintergrundrauschen.» Somit hält keines der untersuchten Modelle der Überprüfung durch XENON100 stand, so das Fazit der Schweizer Forschenden. Folglich lasse sich das DAMA/LIBRA-Ergebnis auch nicht mit Dunkler Materie erklären, die nur von Elektronen gestreut wird.

«Netz noch nicht engmaschig genug»

Bedeuten die neuen Ergebnisse nun, dass Dunkle Materie am Ende gar nicht existiert? Marc Schumann verneint kategorisch: «Man muss sich Dunkle-Materie-Teilchen wie sehr kleine Fische im Meer vorstellen. Wir wissen, dass sie existieren, unsere Netze sind einfach noch nicht engmaschig genug, um sie einzufangen.»

Da XENON100 an der Grenze seiner Sensitivität angekommen ist, installiert das Forschungskonsortium im Moment einen rund 100 Mal empfindlicheren Detektor. Dieses Instrument, XENON1T, werde Ende des Jahres ein komplett neues Kapitel bei der Suche nach Dunkler Materie aufschlagen, so Laura Baudis. Die Forschenden der Universitäten Bern und Zürich sind auch an diesem Experiment beteiligt.

Angaben zur Publikation:

Exclusion of Leptophilic Dark Matter Models using XENON100 Electronic Recoil Data, XENON Collaboration, arXiv:1507.07747, Science (angenommen)

Search for Event Rate Modulation in XENON100 Electronic Recoil Data, XENON Collaboration, arXiv:1507.07748, Physical Review Letters (angenommen)

Weitere Informationen:

http://www.medienmitteilungen.unibe.ch

Nathalie Matter | Universität Bern

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Harmonien in der Optoelektronik
21.07.2017 | Georg-August-Universität Göttingen

nachricht Von photonischen Nanoantennen zu besseren Spielekonsolen
20.07.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten