Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 


X-ray laser takes aim at cosmic mystery

An international collaboration including researchers from Lawrence Livermore National Laboratory has refined a key process in understanding extreme plasmas such as those found in the sun, stars, at the rims of black holes and galaxy clusters.

In short, the team identified a new solution to an astrophysical phenomenon through a series of laser experiments.

A photograph of the instrument setup for an astrophysics experiment at the SLAC's Linac Coherent Light Source (LCLS), a powerful X-ray laser. The experiment was conducted in the Soft X-ray hutch using this electron beam ion trap, or EBIT, built at the Max Planck Institute in Heidelberg, Germany. Photo by Jose R. Crespo Lopez-Urrutia, Max Planck Institute for Nuclear Physics

In the new research, appearing in the Dec. 13 edition of the journal Nature, scientists looked at highly charged iron using the Linac Coherent Light Source (LCLS) free-electron laser. Highly charged iron produces some of the brightest X-ray emission lines from hot astrophysical objects, including galaxy clusters, stellar cornea and the emission of the sun.

The experiment helped scientists understand why observations from orbiting X-ray telescopes do not match theoretical predictions, and paves the way for future X-ray astrophysics research using free-electron lasers such as LCLS. LCLS allows scientists to use an X-ray laser to measure atomic processes in extreme plasmas in a fully controlled way for the first time.

The highly charged iron spectrum doesn't fit into even the best astrophysical models. The intensity of the strongest iron line is generally weaker than predicted. Hence, an ongoing controversy has emerged whether this discrepancy is caused by incomplete modeling of the plasma environment or by shortcomings in the treatment of the underlying atomic physics.

"Our measurements suggest that the poor agreement is rooted in the quality of the underlying atomic wave functions rather than in insufficient modeling of collision processes," said Peter Beiersdorfer, a physicist at Lawrence Livermore and one of the initiators of the project.

Greg Brown, a team member from Livermore, said: "Measurements conducted at the LCLS will be important for interpreting X-ray emissions from a plethora of sources, including black holes, binary stars, stellar coronae and supernova remnants, to name a few."

Many astrophysical objects emit X-rays, produced by highly charged particles in superhot gases or other extreme environments. To model and analyze the intense forces and conditions that cause those emissions, scientists use a combination of computer simulations and observations from space telescopes, such as NASA's Chandra X-ray Observatory and the European Space Agency's XMM-Newton. But direct measurements of those conditions are hard to come by.

In the LCLS experiments, the focus was on plus-16 iron ions, a supercharged form of iron. The iron ions were created and captured using a device known as an electron beam ion trap, or EBIT. Once captured, their properties were probed and measured using the high-precision, ultra brilliant LCLS X-ray laser.

Some collaborators in the experiments have already begun working on new calculations to improve the atomic-scale astrophysical models, while others analyze data from followup experiments conducted at LCLS in April. If they succeed, LCLS may see an increase in experiments related to astrophysics.

"Almost everything we know in astrophysics comes from spectroscopy," said team member Maurice Leutenegger, of NASA's Goddard Space Flight Center, who participated in the study. Spectroscopy is used to measure and study X-rays and other energy signatures, and the LCLS results are valuable in a "wide variety of astrophysical contexts," he said.

The EBIT instrument used in the experiments was developed at the Max Planck Institute for Nuclear Physics and will be available to the entire community of scientists doing research at the LCLS. Livermore has been a pioneer in EBITs. Various EBIT devices have been operational at LLNL for more than 25 years. This was the first time that an EBIT was coupled to an X-ray laser, opening up an entirely new venue for astrophysics research, according to Beiersdorfer.

Researchers from SLAC National Accelerator Laboratory; the Max Planck Institute for Nuclear Physics in Heidelberg, Germany; NASA Goddard Space Flight Center; the Center for Free-Electron Laser Science; GSI Helmholtz Center for Heavy Ion Research; and Giessen, Bochum, Erlangen-Nuremberg and Heidelberg universities in Germany; Kavli Institute for Particle Astrophysics and Cosmology at SLAC; and TRIUMF in Canada also collaborated in the LCLS experiments.

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>



Industrie & Wirtschaft

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
im innovations-report
in Kooperation mit academics