Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

The World´s Thinnest Ratchet - Publication in “Nature Nanotechnology”

20.02.2013
A ratchet supports one-way traffic. One can pull it back and forth, but it only moves forwards. Mechanical ratchets, used to pull or hold heavy objects, are familiar examples. Also, some electronic devices are based on ratchets.

Transistors are made out of diodes, which rectify electrical currents: however hard one pushes electrons in both directions, they flow only in one. Now an international consortium consisting of research groups from Germany, Russia, Sweden, and the U.S., led by the experimental group of Prof. Dr. Sergey Ganichev from the University of Regensburg and supported by the theoretical group of Prof. Dr. Sergey Tarasenko (St. Petersburg) and Prof. Dr. Jaroslav Fabian (Regensburg), has demonstrated that electronic ratchets can be successfully scaled down to one-atom thick layers.

The researchers showed that graphene, a single layer of carbon atoms arranged in a honeycomb lattice, supports a ratchet motion of electrons when placed in a magnetic field. They applied terahertz laser fields to push the electrons back and forth, while the magnetic field acted as a valve to let only those electrons moving in one direction go on, stopping the others. The results of the research group are reported in an issue of “Nature Nanotechnology” (DOI: 10.1038/nnano.2012.231).

Graphene may be the ultimate electronic material, possibly replacing silicon in electronic devices in the future. It has attracted worldwide attention from physicists, chemists, and engineers. Its discoverers, A. Geim and K. Novoselov, were awarded the physics Nobel Prize for it in 2010. The discovery of the ratchet motion in graphene greatly adds to the technological potential of this material and to the prospects of further miniaturization of electronic devices. Before carbon based electronics might take over from silicon many fundamental physical challenges need to be addressed.

In Regensburg, research activities on graphene are embedded in larger research programs, funded by the German Science Foundation (DFG). These are a PhD program on carbon based electronics (DFG-Research Training Group GRK 1570, spokesperson: Prof. Dr. Milena Grifoni) and a Collaborative Research Center (SFB 689, spokesperson: Prof. Dr. Dieter Weiss) funding more than 40 PhD students, as well as projects within a DFG Priority Programm (SPP 1459, spokesperson: Prof. Dr. Thomas Seyller, Chemnitz). The international cooperation on terahertz physics and technology is coordinated by the Regensburg Terahertz Center (TerZ, directed by Prof. Dr. Sergey Ganichev), also funded by the International Bureau of the German Ministry of Education and Research.

Title of the article in “Nature Nanotechnology”:
C. Drexler, S. Tarasenko, P. Olbrich, J. Karch, M. Hirmer, F. Müller, M. Gmitra, J. Fabian, R. Yakimova, S. Lara-Avila, S. Kubatkin, M. Wang, R. Vajtai, P. Ajayan, J. Kono, and S.D. Ganichev: Magnetic quantum ratchet effect in graphene, Nature Nanotechnology (DOI: 10.1038/nnano.2012.231).
More information on the research activities on grapheme in Regensburg:
www.physik.uni-regensburg.de/forschung/gk_carbonano/
www-app.uni-regensburg.de/Fakultaeten/Physik/sfb689/
www.spp1459.uni-erlangen.de/about-spp-1459/
Press Contact:
Prof. Dr. Sergey Ganichev
Universität Regensburg
Faculty of Physics
TerZ – Regensburg Terahertz Center
Tel.: +49 (0)941 943-2050
Sergey.Ganichev@physik.uni-regensburg.de

Alexander Schlaak | idw
Further information:
http://www.physik.uni-regensburg.de/TerZ/

More articles from Physics and Astronomy:

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

Leipziger Biogas-Fachgespräch lädt zum "Branchengespräch Biogas2020+" nach Nossen

11.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltweit erste Solarstraße in Frankreich eingeweiht

16.01.2017 | Energie und Elektrotechnik

Proteinforschung: Der Computer als Mikroskop

16.01.2017 | Biowissenschaften Chemie

Vermeintlich junger Stern entpuppt sich als galaktischer Greis

16.01.2017 | Physik Astronomie