Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wissenschaftler erzeugen Quantenzustände mit ganzzahligem Spin in photonischem Gitter

22.06.2016

Fundamentale Teilcheneigenschaften sichtbar gemacht: Physikern um Prof. Dr. Cornelia Denz von der Westfälischen Wilhelms-Universität Münster ist es gelungen, bestimmte quantenphysikalische Effekte zu erzeugen – mit Licht. Sie konnten erstmals Quantenzustände mit ganzzahligem Spin im Licht durch spezielle optische Wirbel sichtbar machen.

Effekte der Quantenphysik sind schwer fassbar. Einem Team von Physikern um Prof. Dr. Cornelia Denz vom Institut für Angewandte Physik der WWU ist es jedoch nun gelungen, bestimmte quantenphysikalische Effekte zu simulieren und sichtbar zu machen – mit Licht.


Die Herstellung des photonischen Lieb-Gitters mittels sogenannten Laserstrahlschreibens; zu erkennen ist die Bandstruktur des Gitters

Illustration: WWU/AG Denz

In einem speziellen photonischen Gitter breitet sich das Licht nach den Gesetzmäßigkeiten jener Wellenfunkionen aus, die in der Quantenphysik die Rotation von Teilchen beschreiben – den Spin.

Die Wissenschaftler konnten nun erstmals Quantenzustände mit ganzzahligem Spin ("Bosonen") im Licht durch spezielle optische Wirbel sichtbar machen. Andere Forscher hatten zuvor nur halbzahlige Spin-Systeme, sogenannte fermionische Spinsysteme, in photonischen Gittern simulieren können.

Der im photonischen Gitter realisierte Spin wird als Pseudospin bezeichnet. "Viele außergewöhnliche elektronische Eigenschaften bekannter Materialien wie Graphen können wir durch diesen Pseudospin sehr gut erklären", sagt Cornelia Denz.

Die Erkenntnisse seien zudem ein erster Schritt auf dem Weg, höhere Spinzustände zu untersuchen, welche bei den bisher bekannten Elementarteilchen nicht vorkommen. So könne Licht das Verhalten unbekannter und unentdeckter Elementarteilchen vorhersagen.

Die Entdeckung gelang den Wissenschaftlern in einem speziellen photonischen Gitter, das sie durch intensive Laserstrahlen in ein Glasplättchen eingraviert hatten. Dieser Lieb-Gitter genannte Kristall besteht aus drei identischen zweidimensionalen Wellenleitern, die den Pseudospin festlegen.

"Mit Licht können wir auch in kleinsten Dimensionen neuartige Materialien schaffen, die es wiederum ermöglichen, Licht mit ganz neuen Eigenschaften zu erzeugen", sagt Cornelia Denz. "Ein großer Vorteil dieser künstlichen optischen Kristalle ist, dass sie die quantenmechanischen Eigenschaften als Lichtintensität im wahren Wortsinn sichtbar machen."

Neben den Münsteranern waren Wissenschaftler der Australischen Nationaluniversität in Canberra und der Nazarbayev-Universität in Astana, Kasachstan, beteiligt.

Originalveröffentlichung:

Diebel F. et al. (2016): Conical Diffraction and Composite Lieb Bosons in Photonic Lattices. Phys. Rev. Lett.; DOI: 10.1103/PhysRevLett.116.183902

Weitere Informationen:

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.183902 Originalpublikation
https://www.uni-muenster.de/forschungaz/person/7358 Prof. Dr. Cornelia Denz/WWU-Forschungsdatenbank

Dr. Christina Heimken | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie