Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wissenschaftler entwickeln Simulationssoftware für High-Tech Raketentechnik

13.11.2013
Forscher der Universität Greifswald arbeiten an einem Simulationspaket für das Ionentriebwerk HEMPT.

In dem Projekt steht vor allem die Wechselwirkung der austretenden Ionen mit dem Satelliten im Mittelpunkt. Durch eine komplexe Simulationssoftware soll sowohl der Schub als auch die Lebensdauer des Ionenantriebs für Satellitenmissionen optimiert werden.


HEMPT Betrieb Vorne
Fotograf: Benjamin van Reijen

Inhalt: HEMPT-Thruster Module im Betrieb. Unten (blau) Triebwerksplasmaentladung mit expandierenden Ionenstrahl, Oben Neutralisatorentladung um das Negativaufladen vom Satelliten zu vermeiden.


HEMPT Mockup
Fotograf: Benjamin van Reijen

Inhalt: Ausstellungsstück vom HEMPT-Thruster Module, voll repräsentativ, Maßstab 1:1, mit Hochspannungsmodul sowie verbaut in der Stromversorgung 'PSCU' der Fa. Astrium.

Das „Hocheffizienz-Mehrstufen-Plasma-Triebwerk“ (HEMPT) des Geschäftsbereichs Electron Devices von Thales Deutschland aus Ulm wurde 1998 patentiert. Ionentriebwerke werden unter anderem zur Steuerung von Satelliten außerhalb der Erdatmosphäre oder als Antrieb für Missionen im Sonnensystem eingesetzt. Das Projekt wird durch das Deutsche Zentrum für Luft- und Raumfahrt (DLR) über drei Jahre mit insgesamt 800.000 Euro gefördert.

Ionenantriebe arbeiten wie herkömmliche Raketentriebwerke nach dem Rückstoßprinzip. „Um den Rückstoß zu maximieren müssen schwere Teilchen den Antrieb mit einer möglichst hohen Geschwindigkeit verlassen. Chemische Antriebe haben da eine begrenzte Austrittsgeschwindigkeit. Werden jedoch geladene Teilchen verwendet, so können sie mit Hilfe von elektrischen Feldern zu weit höheren Geschwindigkeiten beschleunigt werden,“ so Projektleiter Ralf Schneider, Professor für Computational Physics am Institut für Physik der Universität Greifswald.

Als Quelle für diese Teilchen wird im Inneren des Ionenantriebs in einem Entladungskanal ein Plasma erzeugt. Das ist ein ionisiertes Gas, das aus elektrisch geladenen Teilchen, den Ionen und Elektronen, besteht. Diese geladenen Teilchen erzeugen im Plasma eigene elektromagnetische Felder. „Die Kunst ist nun durch Optimierung zusätzlicher Magnetfelder und des Plasmas die maximale Beschleunigung der Ionen zu erreichen, allerdings ohne Schädigung der Wände des Entladungskanals oder anderer Satellitenteile durch die austretenden Teilchen,“ erklärt Professor Schneider die Herausforderung.

„In dem Grundlagenforschungsprojekt verfolgen wir das langfristige Ziel, ein anwenderorientiertes Computerprogramm zu entwickeln, das aufwendige und kostspielige Langzeittests von Ionenantrieben ersetzt, so wie es zum Beispiel schon heute für Windtunnel oder Crashtests in der Autoindustrie allgemein üblich ist,“ sagt Norbert Püttmann vom Deutschen Zentrum für Luft- und Raumfahrt DLR.

Und Projektleiter Jürgen Schulze vom Deutschen Zentrum für Luft- und Raumfahrt, Bereich Raumfahrtmanagement, Technik für Raumfahrtsysteme und Robotik ergänzt: „Diese Art der Förderung von Grundlagenforschung bringt auch einen Gewinn für die Wirtschaft, da durch ein besseres Verständnis physikalischer Prozesse Leistungsparameter verbessert und Kosten beim Einsatz der Triebwerke verringert werden können.“

Es ist bereits das zweite Vorhaben, das durch das DLR auf diesem Gebiet gefördert wird. „Im ersten Projekt konnte unser Unternehmen mit Hilfe dieser Simulationen wichtige Prozesse im Entladungskanal verstehen. Dies ermöglichte eine zielgerichtete Optimierung des HEMPT in Bezug auf Schub und Lebensdauer des Triebwerks und Winkelverteilung der austretenden Teilchen“, so Dr. Martin Schirra vom Geschäftsbereich Electron Devices von Thales Deutschland in Ulm.

In der Arbeitsgruppe von Professor Schneider, der bis 2009 noch am Institut für Plasmaphysik IPP in Greifswald arbeitete, werden schon seit einigen Jahren Methoden aus der Fusionsforschung für die Simulation von Plasmaantrieben genutzt. Es hatte sich gezeigt, dass Probleme, die Fusionsforschungsanlagen limitieren, auch für Ionenantriebe wichtig sind. Genannt seien als Beispiele Mikroturbulenzen und der daraus resultierende erhöhte Transport der Plasmateilchen oder die Schädigung von Wänden durch auftreffende Plasmateilchen.

Weitere Informationen:
www.dlr.de http://www.dlr.de/
www.thalesgroup.com http://www.thalesgroup.com
AG Computational Sciences (Professor Schneider)
http://www.physik.uni-greifswald.de/arbeitsgruppen/agschneider.html
Über Thales:
Thales Deutschland mit Sitz in Stuttgart ist die drittgrößte Landesorganisation im Thales-Konzern und beschäftigt rund 3.800 Mitarbeiterinnen und Mitarbeiter an insgesamt 24 Standorten mit eigener Produktion und Entwicklung. Im Jahr 2012 erzielte Thales Deutschland einen Umsatz von rund 1 Milliarde Euro, davon 75 Prozent aus deutscher Wertschöpfung.

Seit über einem Jahrhundert in Deutschland ansässig, steht Thales Deutschland als integriertes deutsches Elektronikunternehmen und Systemhaus in der Tradition deutscher Ingenieurskunst. Als anerkannter Teil der deutschen Hightech-Industrie bietet Thales Deutschland seinen Kunden im In- und Ausland modernste, hochsichere und verfügbare Kommunikations-, Informations- und Steuerungssysteme sowie Dienstleistungen für einen sicheren Land-, Luft- und Seeverkehr, für zivile und militärische Sicherheits- und Schutzanforderungen. Darüber hinaus fertigt und entwickelt Thales Deutschland Satellitenkomponenten.

Ansprechpartner an der Universität Greifswald:
Prof. Dr. Ralf Schneider
Institut für Physik
AG Computational Sciences
Felix-Hausdorff-Straße 12
17489 Greifswald
Telefon 03834 86-1400
schneider@uni-greifswald.de
Ansprechpartner DLR:
Andreas Schütz
DLR-Kommunikation/Pressesprecher
Telefon 030 67055474
Mobil 0171 3126466
andreas.schuetz@dlr.de
Ansprechpartner Thales:
Pitt Marx
Media Relations
Thales Deutschland
Telefon 0711 86934977
Mobil 0172 4048346
pitt.marx@thalesgroup.com

Jan Meßerschmidt | idw
Weitere Informationen:
http://www.uni-greifswald.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht CAST-Projekt setzt Dunkler Materie neue Grenzen
23.05.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Heiße Materialien: Fachartikel zum pyroelektrischen Koeffizienten
23.05.2017 | Technische Universität Bergakademie Freiberg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie