Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

22.08.2017

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das Metall. Aber in einer speziellen Probe aus geschichtetem Cer, Rhodium und Indium (CeRhIn5) entscheiden sich alle Elektronen plötzlich für eine gemeinsame Vorzugsrichtung in einem 30 Tesla starken Magnetfeld. Dieser neue Zustand wird „Elektronische Nematizität“ genannt und ähnelt in seinen Eigenschaften den Flüssigkristallen.


Kristalline Proben von CeRhIn5 aus Los Alamos wurden am MPI-CPfS mit einem fokussierten Ionenstrahl in mikroskopische, kristalline Leiterbahnen geschnitten.

MPI CPfS

„Es ist ein wenig wie in alten Zeiten“, erläutert der Autor dieser Arbeit und Leiter der Gruppe für Mikrostrukturierte Quanten Materie, Philip Moll. „Früher hat man Landkarten in beliebigen Richtungen gezeichnet, wie es einem gerade lieb war. Dieser Phasenübergang in hohen Magnetfeldern ist vergleichbar mit dem Moment, als alle Kartenmacher sich darauf einigten, den Norden als Orientierungsanker für ihre Karten zu nehmen. Dafür gibt es keinen speziellen Grund, man hätte sich genauso gut für Westen entscheiden können.“

In ähnlicher Weise entscheiden sich Elektronen in CeRhIn5 in hohen Magnetfeldern, sich plötzlich einfach in eine Richtung zu bewegen.

Wissenschaftler glauben, dass die elektronische Nematizität eng verwandt ist mit der Supraleitung, ein weiterer korrelierter Zustand, bei dem sich Elektronen zu Paaren zusammenschließen, sogenannten „Cooper-Paaren“, und dadurch ohne Widerstand elektrischen Strom leiten können.

Die hier untersuchte chemische Verbindung ist ein Supraleiter, wenn sie hohen Drücken ausgesetzt ist und zeigt nematische Ordnung in hohen Magnetfeldern. Somit gibt sie Forschern die einzigartige Möglichkeit, Zusammenhänge zwischen den beiden Phänomenen in ein und demselben Material zu untersuchen.

„Diese fundamentale Frage zu Materialien mit stark wechselwirkenden Elektronen war die Ausgangslage für meine Doktorarbeit: Müssen sich die Elektronen entscheiden, ob sie sich zur Supraleitung paaren oder ob sie alle in eine Richtung gehen wollen?“ fügt Maja Bachmann, die Doktorandin die mikrostrukturierte nematische Materialen untersucht, hinzu. „Sind Supraleitung und Nematizität konkurrierende Phänomene oder könnte die gleiche Wechselwirkung, welche Supraleitung ermöglicht, auch für Nematizität verantwortlich sein?“

In der Gruppe um Philip Moll werden aus Einkristallen mit einem hochpräzisen, fokussierten Ionenstrahl mikroskopisch kleine 3D Strukturen erzeugt, welche Experimente auf Mikrochip-Ebene schrumpfen können.

Mit diesen Mikrolabors reisen die Wissenschaftler als Teil einer andauernden wissenschaftlichen Zusammenarbeit zu Großforschungseinrichtungen wie die des National High Magnetic Field Laboratory in Tallahassee (Florida, USA) sowie dem Los Alamos National Lab (New Mexiko, USA), um die weltweit höchsten, zerstörungsfrei erzeugten Magnetfelder für ihre wissenschaftlichen Untersuchungen zu nutzen.

Das Max-Planck-Institut für Chemische Physik fester Stoffe (MPI CPfS) in Dresden forscht mit dem Ziel, neue Materialien mit ungewöhnlichen Eigenschaften zu entdecken und zu verstehen.

Chemiker und Physiker, Synthetiker, Experimentatoren und Theoretiker untersuchen gemeinsam, wie sich die chemische Zusammensetzung, die Anordnung der Atome sowie äußere Kräfte auf die magnetischen, elektronischen und chemischen Eigenschaften der Verbindungen auswirken. Dazu wenden sie die modernsten Instrumente und Methoden an.

Neue Quantenmaterialien, -effekte und Materialien für Energieumwandlung sind das Ergebnis dieser interdisziplinären Zusammenarbeit.

Das MPI CPfS ist Teil der Max-Planck-Gesellschaft und wurde 1995 in Dresden gegründet. Es beschäftigt rund 280 Mitarbeiterinnen und Mitarbeiter, davon etwa 180 Wissenschaftlerinnen und Wissenschaftler inklusive 70 Promovierende.

Weitere Informationen:

http://www.nature.com/nature/journal/v548/n7667/full/nature23315.html
http://www.cpfs.mpg.de
http://www.miquamat.de

Dipl.-Übers. Ingrid Rothe | Max-Planck-Institut für Chemische Physik fester Stoffe

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau
17.11.2017 | Universität Ulm

nachricht Zwei verdächtigte Sterne unschuldig an mysteriösem Antiteilchen-Überschuss
17.11.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte