Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wissenschaftler entdecken geschützte Stromkanäle an der Oberfläche von Kristallen

03.03.2015

Forschungsergebnisse in Fachzeitschrift Nature Physics veröffentlicht

Ein Team von Wissenschaftlern der RWTH Aachen, des Forschungszentrums Jülich, der TU Dresden, des Max-Planck-Instituts für Physik komplexer Systeme Dresden und des Leibniz-Instituts für Festkörper und Werkstoffforschung Dresden hat auf der Oberfläche eines Kristalls kanalförmige Strompfade nachgewiesen, die durch das Volumen des Kristalls geschützt sind. Auch bei Modifikationen an der Oberfläche des Materials bleibt die Stromleitfähigkeit der Kanäle erhalten.

Professor Markus Morgenstern vom RWTH-Lehrstuhl für Experimentalphysik (Festkörperphysik) und Mitglied von JARA-FIT ist begeistert: „Aus der Volumeneigenschaften eines Materials auf dessen Fähigkeit zum Stromtransport an der Oberfläche zu schließen, ist nicht nur verblüffend, sondern sichert auch eine extrem robuste Funktionalität.“

Ihre Forschungsergebnisse veröffentlichen die Wissenschaftler von JARA-FIT zusammen mit ihren Kollegen aus Dresden aktuell in der renommierten Fachzeitschrift Nature Physics unter dem Titel „Subnanometre-wide electron channels protected by topology“.

Seit etwa sieben Jahren arbeiten Wissenschaftler weltweit intensiv an einem neuen Zugang zur Beschreibung des Stromtransports in Festkörpern. Im Rahmen des Forschungsbereichs Topologie wird aus den Volumeneigenschaften eines Materials auf dessen Fähigkeit zum Stromtransport an der Oberfläche geschlossen. Die Stromleitfähigkeit eines gewöhnlichen Körpers wird durch sein Volumen bestimmt, Veränderungen am Volumen des Körpers führen auch zu Veränderungen hinsichtlich der Stromleitfähigkeit.

Bei der neuen Methode findet man Materialien, bei denen der Strom nur an der Oberfläche des Körpers fließt. Naheliegend wäre, dass dann Veränderungen der Oberfläche notwendig sind, um die Stromleitfähigkeit zu beeinflussen. Dem ist aber nicht so. Auch hier muss man das Volumen des Körpers verändern, um die Leitfähigkeit zu beeinflussen. Man spricht von topologisch geschützter Oberflächenleitfähigkeit. Die aktuelle Entdeckung erweitert dieses Konzept auf eindimensionale Kanäle, entlang derer der Strom mit dem gleichen topologischen Schutz fließen kann, also auf eine topologisch geschützte Kanalleitfähigkeit.

Die Wissenschaftler entdeckten die Strompfade jetzt mit Hilfe der Rastertunnelspektroskopie, einer Methode, mit der man Elektronenpfade sichtbar macht. Die gefundenen Pfade sind nur etwa vier Atome breit. Sie laufen entlang aller Stufen auf der Oberfläche, das heißt überall dort, wo die Oberfläche eine Stufe aufweist, befindet sich automatisch ein Stromkanal.

Da man mit feinen Spitzen solche Stufen künstlich in die Oberfläche hineinritzen kann, ist der Stromverlauf mit Nanometer-Genauigkeit festlegbar. Die Pfade transportieren nicht nur Strom, sondern gleichzeitig magnetische Informationen, so dass eine direkte Kombination mit magnetischen Speicherzellen eine mögliche Anwendung wäre. Momentan arbeitet das Team am Nachweis der zu erwartenden idealen Stromtransporteigenschaften und denkt über künftige Einsatzmöglichkeiten nach.

Kontakt:
Univ.-Prof. Dr. Markus Morgenstern
II. Physikalisches Institut B
Telefon 0241/80-27076
E-Mail mmorgens@physik.rwth-aachen.de

Thomas von Salzen | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Sterngeburt in den Winden supermassereicher Schwarzer Löcher
28.03.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Das anwachsende Ende der Ordnung
27.03.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit

Antibiotikaresistenz zeigt sich durch Leuchten

28.03.2017 | Biowissenschaften Chemie