Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wissenschaftler durchmustern den Nordhimmel

14.10.2011
Seit 2009 wird der gesamte nördliche Himmel im Licht des neutralen Wasserstoffs unter der Leitung des Argelander-Instituts für Astronomie der Universität Bonn kartiert.

Die Messungen werden mit dem 100-Meter-Teleskop in Effelsberg des Max-Planck-Instituts für Radioastronomie (MPIfR) Bonn durchgeführt. Das von der Deutschen Forschungsgemeinschaft geförderte Vorhaben untersucht den neutralen atomaren Wasserstoff der Milchstraße und ihrer Umgebung bis zu einer Entfernung von 750 Millionen Lichtjahren. Eines der ersten wissenschaftlichen Ergebnisse unter Nutzung des „Effelsberg-Bonn HI Surveys“ (EBHIS) wurde nun in der Fachzeitschrift Astronomy & Astrophysics als „Highlight“ gewürdigt.

„Noch nie zuvor wurde ein solches Vorhaben mit einem der größten Radioteleskope der Welt für den Nordhimmel unternommen“, sagt Projektleiter Dr. Jürgen Kerp vom Argelander-Institut für Astronomie der Universität Bonn (AIfA), das die Messungen zusammen mit dem Max-Planck-Institut für Radioastronomie (MPIfR) in Bonn durchführt. Bei dem einzigartigen Vorhaben wird der atomare Wasserstoff (HI) als das häufigste Element des Universums kartiert. Neben der lokalen Umgebung unserer Sonne werden die gesamte Milchstraße sowie alle Galaxien bis zu einer Entfernung von 750 Millionen Lichtjahren simultan erfasst. Die riesige Sammelfläche des 100-Meter-Radioteleskops und ein spezieller Sieben-Horn-Empfänger machen dieses Projekt überhaupt erst möglich.

Der neue Effelsberg-Bonn HI-Survey (EBHIS) reiht sich in eine lange Tradition von Himmelsdurchmusterungen der Bonner Radioastronomen ein. Peter Kalberla vom Argelander-Institut der Universität Bonn war 2005 federführend an der Realisierung der Leiden/Argentine/Bonn (LAB) Durchmusterung beteiligt. Sie stellt heute eine der meistzitierten Veröffentlichungen innerhalb der Radioastronomie dar. Gemeinsam mit dem Bonner Team unterstützte er auch die australischen Kollegen bei ihrer HI-Kartierung des gesamten südlichen Himmels mit dem 64-Meter-Parkes-Teleskop. Der wissenschaftliche Nutzen solcher Himmelsdurchmusterungen liegt darin begründet, dass hochenergetische Strahlung – zum Beispiel Röntgenlicht – von sehr weit entfernten Galaxien das Gas der Milchstraße durchdringen muss, bevor es von irdischen Teleskopen detektiert werden kann. Leider wird diese Strahlung dabei stark abgeschwächt. Die Radiobeobachtungen erlauben nun, diese Abschwächung exakt zu bestimmen und damit die gemessenen Werte der hochenergetischen Strahlung zu korrigieren.

Dr. Benjamin Winkel vom Max-Planck-Institut für Radioastronomie ist seit Beginn an dem Projekt beteiligt. Er kombinierte mit dem Bonner Team und Prof. Philipp Richter von der Universität Potsdam die neuen EBHIS-Daten mit denjenigen der Parkes-Himmelsdurchmusterung (Galactic All-Sky Survey, GASS). Dabei untersuchte er im Detail den Hochgeschwindigkeitswolken-Komplex „Galactic Center Negative“ (GCN). „Die statistische Untersuchung der Wolken gibt Aufschluss über den Ursprung und die physikalischen Eigenschaften von Komplex GCN“, erläutert er. „Unsere jetzt veröffentlichte Arbeit gibt Hinweise darauf, dass das Gas auf die Scheibe der Milchstraße stürzt.“ Es wird vermutet, dass bislang nur die Spitze des Eisbergs von Komplex GCN beobachtet wird. Die „Einverleibung“ von frischem Gas in die Milchstraße spielt für die Astronomen eine zentrale Rolle, um die beobachtete konstante Sternentstehungsrate in der Milchstraße erklären zu können.

„Die Untersuchung von Hochgeschwindigkeitswolken hat eine lange Tradition an unserem Institut", erklärt Dr. Nadya Ben Bekhti vom Argelander-Institut für Astronomie. „Es handelt sich dabei um riesige Strukturen aus kaltem Gas, die sich im Halo unserer Milchstraße befinden.“ Beim Halo – griechisch „Lichthof“ – handelt es sich um einen Bereich, der größer als die Galaxie selbst ist. Die erheblich verbesserte Empfindlichkeit und Auflösung der neuen Kartierungen (EBHIS und GASS) gegenüber der älteren LAB-Kartierung zeigt nun erstmalig, dass zumindest der Komplex GCN nicht, wie lange geglaubt, von wenigen großen diffusen Objekten dominiert wird. Er besteht vielmehr aus Hunderten von winzigen Wölkchen.

Publikation: B. Winkel, N. Ben Bekhti, V. Darmstädter, L. Flöer, J. Kerp and P. Richter: The high-velocity cloud complex Galactic center negative as seen by EBHIS and GASS. I. Cloud catalog and global properties, Astronomy & Astrophysics 533, A105 (2011). (DOI 10.1051/0004-6361/201117357).

Kontakt:

Privat-Dozent Dr. Jürgen Kerp
Argelander-Institut für Astronomie der Universität Bonn
Tel: 0228/733667
E-Mail: jkerp@astro.uni-bonn.de
Dr. Benjamin Winkel
Max-Planck-Institut für Radioastronomie Bonn und
Argelander-Institut für Astronomie der Universität Bonn
Tel. 02257/301124
E-Mail: bwinkel@mpifr-bonn.mpg.de

Johannes Seiler | idw
Weitere Informationen:
http://www3.uni-bonn.de/Pressemitteilungen/281-2011

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erforschung von Elementarteilchen in Materialien
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau