Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Wirkung kosmischer Strahlung im Weltall

11.08.2009
Satelliten und Raumfahrzeuge haben komplexe mikroelektronische Bauteile an Bord, deren Ausfall katastrophale Folgen hat. Die kosmische Strahlung im Weltall kann die empfindliche Elektronik beschädigen.

In einem gemeinsamen Forschungsprojekt vom Fraunhofer-Institut für Naturwissenschaftlich-Technische Trendanalysen INT in Euskirchen, der European Space Agency (ESA) und dem GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt untersuchen die Wissenschaftler den Einfluss der Strahlung auf die Elektronik.

Am Teilchenbeschleuniger des GSI bestrahlen die Forscher mikro-elektronische Bauelemente unter Leitung der INT-Wissenschaftler mit relativistischen Ionen. Die GSI-Beschleunigeranlage ist die einzige in Europa, an der sich Ionenstrahlung so herstellen lässt, wie sie als kosmische Strahlung im Weltall auftritt.

Ziel des Forschungsprojekts ist es, die Eignung verschiedener Mikrochips für den Einsatz im Weltraum zu testen. Darüber hinaus sollen Grundlagen erforscht werden, um in Zukunft strahlungsfeste, leichtere und kompaktere Elektronik zu entwickeln, um Platz und Gewicht zu sparen. So kann in der Raumfahrttechnik in Zukunft auf die bisher nötigen Abschirmungen und auch auf Ersatzelektronik, die für manche Bauteile mitgeführt wird, verzichtet werden.

"Wir wollen erstmals systematisch untersuchen, wie die Energie der Ionenstrahlen die Mikroelektronik beeinflusst. Die GSI-Beschleunigeranlage bietet dazu optimale Voraussetzungen. Hier können wir hochenergetische Ionen, von den leichtesten bis zu den schwersten Elementen, erzeugen. Damit decken wir das gesamte Spektrum an Ionenstrahlung ab, wie es im Universum permanent auftritt", sagt Stefan Metzger, Projektleiter am Fraunhofer-Institut. Die Mitarbeiter des INT sind Experten auf dem Gebiet der Strahlenschäden in Elektronik. Neben der fachlichen Expertise unterstützt das INT das Projekt mit einer speziellen Mess-Infrastruktur, mit der sich solche Fehler in elektronischen Bauteilen feststellen lassen.

In einem ersten Experiment haben Wissenschaftler einen von der ESA bereit gestellten Mikrochip mit Gold-Ionen bestrahlt. Die Analyse bestätigte die Vermutung, dass die Störanfälligkeit des Chips stark von der Energie der Ionen abhängt. Für eine genaue Untersuchung sind in den nächsten Jahren weitere systematische Bestrahlungen verschiedener Bauteile unter dem Einfluss unterschiedlicher Ionen und Energien vorgesehen.

"Ionenstrahlen sind Hauptbestandteil der kosmischen Strahlung und haben die größte Wirkung auf die Mikroelektronik. Eine genaue Kenntnis dieses Einflusses ist die Voraussetzung, um in Zukunft gezielt Elektronik für Raumfahrt optimieren zu können", sagt Marco Durante, Leiter der Abteilung Biophysik am GSI. Bereits ein einzelnes Ion kann in mikroelektronischen Bauteilen Schäden verursachen. Durch die hohe elektrische Ladung und die Energie des Ions können in den Halbleitermaterialen des Mikrochips freie Ladungsträger erzeugt werden, die zu kleinen elektrischen Stromflüssen führen und so Funktionsfehler oder einen Ausfall des Chips verursachen können.

Stefanie Heyduck | idw
Weitere Informationen:
http://www.fraunhofer.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Raumschrott im Fokus
20.05.2018 | Universität Bern

nachricht Countdown für Kilogramm, Kelvin und Co.
18.05.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

Tagung »Anlagenbau und -betrieb der Zukunft«

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Wie Immunzellen Bakterien mit Säure töten

18.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics