Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Wirkung kosmischer Strahlung im Weltall

11.08.2009
Satelliten und Raumfahrzeuge haben komplexe mikroelektronische Bauteile an Bord, deren Ausfall katastrophale Folgen hat. Die kosmische Strahlung im Weltall kann die empfindliche Elektronik beschädigen.

In einem gemeinsamen Forschungsprojekt vom Fraunhofer-Institut für Naturwissenschaftlich-Technische Trendanalysen INT in Euskirchen, der European Space Agency (ESA) und dem GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt untersuchen die Wissenschaftler den Einfluss der Strahlung auf die Elektronik.

Am Teilchenbeschleuniger des GSI bestrahlen die Forscher mikro-elektronische Bauelemente unter Leitung der INT-Wissenschaftler mit relativistischen Ionen. Die GSI-Beschleunigeranlage ist die einzige in Europa, an der sich Ionenstrahlung so herstellen lässt, wie sie als kosmische Strahlung im Weltall auftritt.

Ziel des Forschungsprojekts ist es, die Eignung verschiedener Mikrochips für den Einsatz im Weltraum zu testen. Darüber hinaus sollen Grundlagen erforscht werden, um in Zukunft strahlungsfeste, leichtere und kompaktere Elektronik zu entwickeln, um Platz und Gewicht zu sparen. So kann in der Raumfahrttechnik in Zukunft auf die bisher nötigen Abschirmungen und auch auf Ersatzelektronik, die für manche Bauteile mitgeführt wird, verzichtet werden.

"Wir wollen erstmals systematisch untersuchen, wie die Energie der Ionenstrahlen die Mikroelektronik beeinflusst. Die GSI-Beschleunigeranlage bietet dazu optimale Voraussetzungen. Hier können wir hochenergetische Ionen, von den leichtesten bis zu den schwersten Elementen, erzeugen. Damit decken wir das gesamte Spektrum an Ionenstrahlung ab, wie es im Universum permanent auftritt", sagt Stefan Metzger, Projektleiter am Fraunhofer-Institut. Die Mitarbeiter des INT sind Experten auf dem Gebiet der Strahlenschäden in Elektronik. Neben der fachlichen Expertise unterstützt das INT das Projekt mit einer speziellen Mess-Infrastruktur, mit der sich solche Fehler in elektronischen Bauteilen feststellen lassen.

In einem ersten Experiment haben Wissenschaftler einen von der ESA bereit gestellten Mikrochip mit Gold-Ionen bestrahlt. Die Analyse bestätigte die Vermutung, dass die Störanfälligkeit des Chips stark von der Energie der Ionen abhängt. Für eine genaue Untersuchung sind in den nächsten Jahren weitere systematische Bestrahlungen verschiedener Bauteile unter dem Einfluss unterschiedlicher Ionen und Energien vorgesehen.

"Ionenstrahlen sind Hauptbestandteil der kosmischen Strahlung und haben die größte Wirkung auf die Mikroelektronik. Eine genaue Kenntnis dieses Einflusses ist die Voraussetzung, um in Zukunft gezielt Elektronik für Raumfahrt optimieren zu können", sagt Marco Durante, Leiter der Abteilung Biophysik am GSI. Bereits ein einzelnes Ion kann in mikroelektronischen Bauteilen Schäden verursachen. Durch die hohe elektrische Ladung und die Energie des Ions können in den Halbleitermaterialen des Mikrochips freie Ladungsträger erzeugt werden, die zu kleinen elektrischen Stromflüssen führen und so Funktionsfehler oder einen Ausfall des Chips verursachen können.

Stefanie Heyduck | idw
Weitere Informationen:
http://www.fraunhofer.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise