Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Winzige Magnete imitieren Dampf, Wasser und Eis

21.09.2015

Aus einer Milliarde winziger Magnete haben Forschende am Paul Scherrer Institut PSI ein künstliches Material erschaffen. Überraschenderweise zeigt sich nun, dass die magnetischen Eigenschaften dieses sogenannten Metamaterials sich je nach Temperatur ändern, so dass es verschiedene Zustände einnehmen kann; ähnlich wie Wasser einen gasförmigen, flüssigen und festen Zustand hat. Dieses Material aus Nano-Magneten liesse sich womöglich für elektronische Anwendungen der Zukunft – beispielsweise zur effizienteren Informationsübertragung – weiterentwickeln.

Ein künstliches Material – erschaffen aus einer Milliarde Nanomagnete – nimmt je nach Temperatur verschiedene Aggregatzustände ein: Ähnlich wie die Übergänge zwischen Dampf, Wasser und Eis zeigt auch das sogenannte Metamaterial Phasenübergänge. Diesen Effekt haben Forschende um Laura Heyderman vom PSI beobachtet.


PSI-Forschende haben ein magnetisches Metamaterial aus länglichen Nanomagneten erschaffen, die als flaches, wabenförmiges Muster angeordnet sind. Die Ordnung der Magnetisierung des künstlichen Materials nahm bei verschiedenen Temperaturen deutlich verschiedene Zustände ein – ähnlich wie Moleküle im Eis geordneter sind als im Wasser und darin wiederum geordneter als im Dampf. (Bild: Paul Scherrer Institut/Luca Anghinolfi)

„Wir waren überrascht und begeistert“, erklärt Studienleiterin Heyderman. „Denn nur komplexe Systeme können Phasenübergänge aufweisen.“ Zugleich können komplexe Systeme zu neuen Arten der Informationsübertragung dienen. Das neue Studienergebnis zeigt also: Das Metamaterial der PSI-Forschenden wäre ein potentieller Kandidat hierfür.

Der grosse Vorteil des künstlichen Metamaterials ist, dass es sich beinahe beliebig massschneidern lässt. Während sich die einzelnen Atome in einem natürlichen Material nicht in diesem grossen Stil punktgenau neu anordnen lassen, ist mit den Nano-Magneten genau das möglich, so die Forschenden.

Wabenmuster aus Nanomagneten

Ihre einzelnen Magnete haben in etwa die längliche Form eines Reiskorns und sind nur 63 Nanometer lang. Mit einer hochentwickelten Technik platzierten die Forschenden eine Milliarde dieser winzigen Stäbchen als grossflächiges Bienenwaben-Muster auf einem flachen Untergrund. Insgesamt bedeckten die Nano-Magnete so eine Fläche von gerade einmal fünf mal fünf Millimetern.

Mit einer speziellen Messtechnik betrachteten die Wissenschaftler das kollektive magnetische Verhalten ihres Metamaterials zunächst bei Raumtemperatur. Hier gab es keine Ordnung in der magnetischen Ausrichtung: Wild durcheinander zeigten magnetische Nord- und Südpole in die eine oder andere Richtung.

Als die Forschenden jedoch langsam und kontinuierlich das Metamaterial kühlten, erreichten sie einen Punkt, an dem eine höhere Ordnung eintrat: Die winzigen Magnete beachteten einander nun stärker als zuvor.

Mit weiter sinkender Temperatur kam es nochmals zu einer plötzlichen Änderung hin zu noch höherer Ordnung, die zudem fast wie eingefroren wirkte. Ganz ähnlich erhöht sich die weitreichende Ordnung der Wassermoleküle in dem Moment, in dem Wasser zu Eis gefriert. „Dass auch unser künstliches Material dieses ganz alltägliche Phänomen eines Phasenübergangs zeigt, hat uns fasziniert“, so Heyderman.

Das Metamaterial lässt sich massschneidern

Als nächsten Schritt könnten die Forschenden Einfluss auf diese magnetischen Phasenübergänge nehmen, indem sie die Grösse, Form und Anordnung der Nanomagnete verändern. Dies ermöglicht die Erschaffung neuer Materiezustände, die auch zu Anwendungen führen könnten: „Das besondere ist: Mit massgeschneiderten Phasenübergängen liessen sich Metamaterialien in Zukunft gezielt für verschiedene Bedürfnisse anpassen“, erklärt Heyderman.

Neben dem möglichen Einsatz in der Informationsübertragung könnte das Metamaterial sich auch in der Datenspeicherung als nützlich erweisen; oder auf Sensoren, die Magnetfelder nachweisen. Ganz allgemein könnte es in der Spintronik zum Einsatz kommen, also in einer zukunftsträchtigen Weiterentwicklung der Elektronik für neuartige Computertechnik.

Die Messungen, mit denen die Forschenden die magnetische Ausrichtung der Nano-Magnete und damit die Eigenschaften des Metamaterials messbar machten, lassen sich ausschliesslich am PSI durchführen. Die weltweit einmaligen Apparaturen der SμS liefern Strahlen aus exotischen Elementarteilchen namens Myonen, die sich zur Untersuchung nanomagnetischer Eigenschaften nutzen lassen. Die Studie fand in Zusammenarbeit mit der Forschungsgruppe um Stephen Lee von der Universität St Andrews, Schottland, statt.

Text: Paul Scherrer Institut/Laura Hennemann

Über das PSI

Das Paul Scherrer Institut PSI entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Energie und Umwelt sowie Mensch und Gesundheit. Die Ausbildung von jungen Menschen ist ein zentrales Anliegen des PSI. Deshalb sind etwa ein Viertel unserer Mitarbeitenden Postdoktorierende, Doktorierende oder Lernende. Insgesamt beschäftigt das PSI 1900 Mitarbeitende, das damit das grösste Forschungsinstitut der Schweiz ist. Das Jahresbudget beträgt rund CHF 350 Mio.

Kontakt/Ansprechpartner

Prof. Dr. Laura Heyderman,
Labor für Mikro- und Nanotechnologie, Paul Scherrer Institut; Telefon: +41 56 310 2613, E-Mail: laura.heyderman@psi.ch

Dr. Hubertus Luetkens,
Labor für Myonspin-Spektroskopie, Paul Scherrer Institut; Telefon: +41 56 310 4450, E-Mail: hubertus.luetkens@psi.ch

Dr. Peter Derlet,
Gruppe Festkörpertheorie, Paul Scherrer Institut; Telefon: +41 56 310 3164, E-Mail: peter.derlet@psi.ch

Originalveröffentlichung

Thermodynamic phase transitions in a frustrated magnetic metamaterial
L. Anghinolfi, H. Luetkens, J. Perron, M.G. Flokstra, O. Sendetskyi, A. Suter, T. Prokscha, P.M. Derlet, S.L. Lee, and L.J. Heyderman, Nature Communications, 21 September 2015, doi: 10.1038/ncomms9278 (Link: http://dx.doi.org/10.1038/ncomms9278)

Weitere Informationen:

Hintergrundinformationen
Micro- und Nanotechnologie: http://www.psi.ch/media/mikro-und-nanotechnologie
Forschung mit Myonen: http://www.psi.ch/media/forschung-mit-myonen
Pressemitteilung im Original(mit Abbildungen): http://psi.ch/uA4b

Dagmar Baroke | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall
22.08.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten
21.08.2017 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

22.08.2017 | Physik Astronomie

Forscher beschreiben neuartigen Antikörper als möglichen Wirkstoff gegen Alzheimer

22.08.2017 | Biowissenschaften Chemie

Virus mit Eierschale

22.08.2017 | Biowissenschaften Chemie