Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wilder Tanz im Schwert des Orion

12.09.2012
Der Orion ist eines der hellsten Sternbilder. In seinem Zentrum befindet sich der Orionnebel, der ein Ort aktiver Sternentstehung ist.

Dort tanzen die Sterne deutlich schneller umeinander, als man aufgrund der sichtbaren Masse erwarten würde. Astrophysiker der Universität Bonn haben zusammen mit ihren Kollegen der Karls-Universität Prag (Tschechien) und der University of Queensland in Brisbane (Australien) dieses Rätsel gelöst.


Gesamtbild des Orion Nebels mit dem Sternhaufen im Zentrum: Das mutmaßliche Schwarze Loch wäre genau zwischen den vier hellen Sternen, welche das Zentrum des Sternhaufens markieren. Dies sind die Trapezsterne des Orionnebelhaufens.

(c) Foto: NASA/ESA/Hubble Space Telescope


Der Orionnebelsternhaufen als Aufnahme des ESO-Observatoriums: Im Infraroten können Astronomen durch die Wolke sehen und die Tausenden lichtschwachen jungen Sterne sichtbar machen. Das Trapez ist im Zentrum der Aufnahme erkennbar. Zwischen diesen vier hellen Sternen würde sich das mutmaßliche Schwarze Loch befinden.

(c) ESO/M.McCaughrean et al. (AIP)

Ihre Berechnungen zeigen, dass ein schweres Schwarzes Loch im Zentrum des Orionhaufens der Grund sein könnte. Die Arbeit wird nun im renommierten Fachjournal „The Astrophysical Journal“ erscheinen.

Der zentrale Sternhaufen im Orionnebel ist etwa 1.300 Lichtjahre von uns entfernt und hat einen Durchmesser von einigen Lichtjahren. Er enthält etwa 5.000 junge Sterne. Beobachtungen zeigen, dass sich dieser Haufen erst vor etwa ein oder zwei Millionen Jahren gebildet hat. „Die Sterne nahe des Zentrums im sogenannten Trapez des Haufens tanzen schneller umeinander, als man aufgrund der sichtbaren Materie erwarten würde“, stellt Prof. Dr. Pavel Kroupa vom Argelander-Institut für Astronomie der Universität Bonn fest.

„Das zentrale Trapez müsste sich deshalb eigentlich auflösen.“ Trotz des Alters der Sternengruppe ist das bislang aber nicht geschehen. „Die Verteilung der Masse der Sterne ist ebenfalls sehr ungewöhnlich“, berichtet der Astrophysiker der Universität Bonn weiter. Im Vergleich zur Zahl der Sterne mit niedriger Masse gebe es zu wenig schwere Sterne. Welche geheimnisvolle Kraft hält die eigentlich auseinanderdriftenden Sterne zusammen? Die Wissenschaftler vermuten, dass es im Sternhaufen des Orionnebels irgendeine unsichtbare Materie geben könnte, die wie eine Art Kitt wirkt.

Die Wissenschaftler simulierten die Bildung des Orionhaufens

Um die Bildung des Orionhaufens besser verstehen zu können, simulierten die Wissenschaftler daher seine Entstehung aus einer Molekülwolke im Computer. Das Team ging dabei von einer dichten Gaswolke mit einigen Tausend Sonnenmassen Gewicht aus, die ein Gemisch aus schweren und leichten Sternen enthielt. „Wir haben hierfür eine neue Methode entwickelt, um die Wechselwirkung des Gases mit der Strahlung der sich bildenden schweren Sterne zu berechnen. Das Gas in der Nähe der Sterne wird aufgeheizt, und damit steigt der Druck und das Gas expandiert explosionsartig aus dem jungen Haufen“, betont Dr. Ladislav Subr von der Karls-Universität Prag. Um die Komplexität dieses Systems nachzubilden, benutzten sie einen Computercode als Grundlage, der von Sverre Aarseth in Cambridge in mehreren Jahrzehnten Programmierarbeit entwickelt wurde.

Massereiche Sterne verwandelten sich in ein Schwarzes Loch

Die Astronomen berechneten die Entwicklung der schweren Sterne im Orionhaufen und untersuchten außerdem ihre Kollisionen untereinander. „Die Berechnungen zeigen, wie das Gas aus dem Haufen getrieben wurde und der Haufen allmählich expandierte“, beschreibt Dr. Holger Baumgardt von der University of Queensland in Brisbane (Australien). Die schweren Sterne wanderten demnach ins Haufenzentrum, wo viele von ihnen heraus geschleudert wurden, während andere miteinander kollidierten. „Im Zentrum des Haufens entstand oftmals ein sehr massereicher Stern, der sich am Ende seiner Lebenszeit in ein schweres Schwarzes Loch verwandelte, welches bis zu einige hundert Sonnenmassen wog“, berichtet Dr. Subr.

Berechnungen erklären die Eigenschaften des Orionhaufens

In der Nähe eines solchen schweren Schwarzen Lochs ist die Gravitation extrem stark – so stark, dass nicht einmal Licht diesen Bereich verlassen kann. „Das Schwarze Loch erklärt insbesondere die geringe Anzahl schwerer Sterne, die noch im Haufen vorhanden ist, und warum die Sterne im Zentrum eine so hohe Geschwindigkeit besitzen“, stellt Prof. Kroupa fest. „Mit unseren Berechnungen können wir nahezu alle Eigenschaften des Orionhaufens erklären.“ Das Schwarze Loch lässt sich nicht direkt beobachten. Allerdings deuten die Simulationen darauf hin, dass es Teil eines kompakten Doppelsternsystems ist. Im Orionhaufen würde dann der Begleiter des jeweiligen Doppelsterns in periodischen Abständen nahe am Schwarzen Loch vorbeifliegen und dabei Gas auf es stürzen lassen. „In diesem Fall würde das Schwarze Loch als helle Röntgenquelle am Himmel erscheinen“, sagt Prof. Kroupa. Damit kann die Existenz des Schwarzen Loches mit Beobachtungen nachgeprüft werden.
Falls tatsächlich ein schweres Schwarzes Loch im Orionhaufen vorhanden ist, würde dies das Verständnis der Wissenschaftler über die Bildung dieser Objekte revolutionieren. „Ein Schwarzes Loch im Zentrum des Orionnebels würde auch eine einmalige Chance für das Studium dieser Objekte darstellen“, sagt der Astrophysiker der Universität Bonn. Der Orionnebel wird daher auch in Zukunft ein intensiv untersuchtes Himmelsobjekt bleiben.

Publikation: Catch me if you can: is there a runaway-mass black hole in the Orion Nebula Cluster? „The Astrophysical Journal“, DOI: 10.1088/0004-637X/757/1/37

Kontakt:

Prof. Dr. Pavel Kroupa
Argelander-Institut für Astronomie
der Universität Bonn
Tel. 0228/736140 oder 733655 oder 0177/9566127
E-Mail: pavel@astro.uni-bonn.de

Johannes Seiler | idw
Weitere Informationen:
http://www.uni-bonn.de
http://arxiv.org/abs/1209.2114

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eine Extra-Sekunde zum neuen Jahr
08.12.2016 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Heimcomputer entdecken rekordverdächtiges Pulsar-Neutronenstern-System
08.12.2016 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops