Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Sterne zu Schwergewichten heranwachsen

04.11.2015

Astronomen finden stabile Scheibe um eine junge, massereiche Sonne

Unter den Sternen gibt es Leicht- und Schwergewichte. Alle werden sie in Gas- und Staubwolken geboren. Doch je massereicher ein Sternbaby ist, desto früher zündet in seinem Innern die Kernfusion.


Ein Stern nimmt zu: Diese künstlerische Darstellung zeigt die Gas- und Staubscheibe um die massereiche Sonne AFGL 4176.

© K. G. Johnston und ESO

Und der so produzierte Strahlungsdruck sollte eigentlich die Umgebung säubern und auf diese Weise den Nachschub an Materie verhindern, die den Stern weiter wachsen lässt. Dennoch erreichen manche Sterne Massen von mehr als dem Hundertfachen jener unserer Sonne. Wie ist das möglich?

Schon länger glauben die Astronomen, dass Scheiben rund um die jungen Sterne dabei eine wichtige Rolle spielen. Jetzt haben Forscher, unter anderem aus dem Heidelberger Max-Planck-Institut für Astronomie, erstmals ein solches stabiles Gebilde rund um einen der massereichsten gerade entstehenden Sterne unserer Galaxis entdeckt.

Das Team unter der Leitung von Katharine Johnston von der Universität Leeds und unter Beteiligung der Max-Planck-Astronomen Thomas Robitaille, Henrik Beuther, Hendrik Linz und Roy van Boekel nahmen das Objekt mit der Katalognummer AFGL 4176 ins Visier. Es handelt sich um einen sehr massereichen Stern in der südlichen Konstellation Zentaur, rund 14.000 Lichtjahre von der Erde entfernt.

Der Stern wird gerade geboren, weshalb die nahe Umgebung um ihn herum hinter einer Hülle aus Gas und Staub verborgen liegt. Mit dem ALMA-Observatorium der Europäischen Südsternwarte (ESO) beobachteten die Wissenschaftler den Stern jedoch im Millimeter- und Submillimeterbereich – und blickten dabei hinter den Schleier in das Innere der Hülle. Dort wiesen sie eine scheibenartige, rotierende Struktur nach.

Um diese Beobachtung zu bestätigen, arrangierten die Astronomen eine Art Gegenüberstellung: Zunächst simulierten sie mehr als 10.000 Modellscheiben mit verschiedenen Eigenschaften. Danach verglichen sie diese Bilder und Spektren mit den aus der Natur gewonnenen Daten. Die beste Übereinstimmung ergab sich für eine stabile Scheibe, für die sowohl der Gravitationseinfluss des Zentralsterns als auch jener der Scheibenmaterie wesentlich ist.

Der Radius der Scheibe um AFGL 4176 ist rund 2000-fach so groß wie der mittlere Abstand der Erde von der Sonne. Die Gesamtmasse liegt bei 12 Sonnenmassen – das entspricht knapp der Hälfte der rund 25 Sonnenmassen, die der Stern selbst aufweist. Die Scheibe rotiert um den Stern in ähnlicher Weise wie die Planeten um unsere Sonne: Das Gas in den inneren Regionen bewegt sich schneller als das in den äußeren und folgt den Anfang des 17. Jahrhunderts von Johannes Kepler gefundenen Gesetzen.

Solche Keplerscheiben könnten eine Schlüsselrolle für das Wachstum massereicher Sterne spielen und insbesondere erklären, wie sich trotz des beträchtlichen Strahlungsdrucks des jungen Sterns noch hinreichend viel zusätzliche Materie ansammeln kann. Denn eine solche stabile Scheibe kann einerseits sehr große Materiemengen auf den entstehenden Stern lenken; andererseits bietet sie dem Strahlungsdruck ein sehr schmales Profil und damit ungleich weniger Angriffsfläche als Gas, das den Stern in einer Art Kugelschale umgibt.

Bisher jedoch hatten die Astronomen stabile Scheiben um die massereichsten Sternbabys (Sterne vom Typ O) nicht sicher nachweisen können. Ob solche Scheiben als Erklärungsmöglichkeiten überhaupt infrage kamen, war daher unklar.

Hingegen zeigen die Beobachtungen von Katharine Johnston und ihren Kollegen, dass zumindest einer der massereichsten Sterne in gleicher Weise entstehen kann wie seine masseärmeren Verwandten: mit Mechanismen, die trotz der Unterschiede in Skalen und Zeitverlauf dieselben sind wie bei masseärmeren Sternen; und mit Materie, die von einer Keplerscheibe auf den wachsenden jungen Stern geleitet wird.

Die hohe Qualität der ALMA-Beobachtungen weckt Erwartungen, dass sich auch weitere wichtige offene Fragen zur Entstehung massereicher Sterne klären lassen. Aufschluss erhoffen sich die Astronomen vor allem über eine Besonderheit: Sehr massereiche Sterne sind fast immer Teil von Doppel- oder Mehrfachsystemen. Hochaufgelöste Abbildungen der innersten Bereiche in den Frühphasen der Sterngeburt könnten direkt zeigen, wie sich die Vorläufer der verschiedenen Komponenten eines solchen Systems bilden.


Ansprechpartner

Dr. Markus Pössel
Öffentlichkeitsarbeit

Max-Planck-Institut für Astronomie, Heidelberg
Telefon: +49 6221 528-261

Fax: +49 6221 528-246

E-Mail: pr@mpia.de


Dr. Henrik Beuther
Max-Planck-Institut für Astronomie, Heidelberg
Telefon: +49 6221 528-447

E-Mail: beuther@mpia.de


Dr. Thomas Robitaille
Max-Planck-Institut für Astronomie, Heidelberg
Telefon: +49 6221 528-395

E-Mail: robitaille@mpia.de


Originalpublikation
Johnston et al.
A Keplerian-like disk around the forming O-type star AFGL 4176
Astrophysical Journal Letters, 29 October 2015

Quelle

Dr. Markus Pössel | Max-Planck-Institut für Astronomie, Heidelberg
Weitere Informationen:
https://www.mpg.de/9717881/wachstum-massereiche-sterne

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Raumschrott im Fokus
20.05.2018 | Universität Bern

nachricht Countdown für Kilogramm, Kelvin und Co.
18.05.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

Tagung »Anlagenbau und -betrieb der Zukunft«

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Wie Immunzellen Bakterien mit Säure töten

18.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics