Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Sterne zu Schwergewichten heranwachsen

04.11.2015

Astronomen finden stabile Scheibe um eine junge, massereiche Sonne

Unter den Sternen gibt es Leicht- und Schwergewichte. Alle werden sie in Gas- und Staubwolken geboren. Doch je massereicher ein Sternbaby ist, desto früher zündet in seinem Innern die Kernfusion.


Ein Stern nimmt zu: Diese künstlerische Darstellung zeigt die Gas- und Staubscheibe um die massereiche Sonne AFGL 4176.

© K. G. Johnston und ESO

Und der so produzierte Strahlungsdruck sollte eigentlich die Umgebung säubern und auf diese Weise den Nachschub an Materie verhindern, die den Stern weiter wachsen lässt. Dennoch erreichen manche Sterne Massen von mehr als dem Hundertfachen jener unserer Sonne. Wie ist das möglich?

Schon länger glauben die Astronomen, dass Scheiben rund um die jungen Sterne dabei eine wichtige Rolle spielen. Jetzt haben Forscher, unter anderem aus dem Heidelberger Max-Planck-Institut für Astronomie, erstmals ein solches stabiles Gebilde rund um einen der massereichsten gerade entstehenden Sterne unserer Galaxis entdeckt.

Das Team unter der Leitung von Katharine Johnston von der Universität Leeds und unter Beteiligung der Max-Planck-Astronomen Thomas Robitaille, Henrik Beuther, Hendrik Linz und Roy van Boekel nahmen das Objekt mit der Katalognummer AFGL 4176 ins Visier. Es handelt sich um einen sehr massereichen Stern in der südlichen Konstellation Zentaur, rund 14.000 Lichtjahre von der Erde entfernt.

Der Stern wird gerade geboren, weshalb die nahe Umgebung um ihn herum hinter einer Hülle aus Gas und Staub verborgen liegt. Mit dem ALMA-Observatorium der Europäischen Südsternwarte (ESO) beobachteten die Wissenschaftler den Stern jedoch im Millimeter- und Submillimeterbereich – und blickten dabei hinter den Schleier in das Innere der Hülle. Dort wiesen sie eine scheibenartige, rotierende Struktur nach.

Um diese Beobachtung zu bestätigen, arrangierten die Astronomen eine Art Gegenüberstellung: Zunächst simulierten sie mehr als 10.000 Modellscheiben mit verschiedenen Eigenschaften. Danach verglichen sie diese Bilder und Spektren mit den aus der Natur gewonnenen Daten. Die beste Übereinstimmung ergab sich für eine stabile Scheibe, für die sowohl der Gravitationseinfluss des Zentralsterns als auch jener der Scheibenmaterie wesentlich ist.

Der Radius der Scheibe um AFGL 4176 ist rund 2000-fach so groß wie der mittlere Abstand der Erde von der Sonne. Die Gesamtmasse liegt bei 12 Sonnenmassen – das entspricht knapp der Hälfte der rund 25 Sonnenmassen, die der Stern selbst aufweist. Die Scheibe rotiert um den Stern in ähnlicher Weise wie die Planeten um unsere Sonne: Das Gas in den inneren Regionen bewegt sich schneller als das in den äußeren und folgt den Anfang des 17. Jahrhunderts von Johannes Kepler gefundenen Gesetzen.

Solche Keplerscheiben könnten eine Schlüsselrolle für das Wachstum massereicher Sterne spielen und insbesondere erklären, wie sich trotz des beträchtlichen Strahlungsdrucks des jungen Sterns noch hinreichend viel zusätzliche Materie ansammeln kann. Denn eine solche stabile Scheibe kann einerseits sehr große Materiemengen auf den entstehenden Stern lenken; andererseits bietet sie dem Strahlungsdruck ein sehr schmales Profil und damit ungleich weniger Angriffsfläche als Gas, das den Stern in einer Art Kugelschale umgibt.

Bisher jedoch hatten die Astronomen stabile Scheiben um die massereichsten Sternbabys (Sterne vom Typ O) nicht sicher nachweisen können. Ob solche Scheiben als Erklärungsmöglichkeiten überhaupt infrage kamen, war daher unklar.

Hingegen zeigen die Beobachtungen von Katharine Johnston und ihren Kollegen, dass zumindest einer der massereichsten Sterne in gleicher Weise entstehen kann wie seine masseärmeren Verwandten: mit Mechanismen, die trotz der Unterschiede in Skalen und Zeitverlauf dieselben sind wie bei masseärmeren Sternen; und mit Materie, die von einer Keplerscheibe auf den wachsenden jungen Stern geleitet wird.

Die hohe Qualität der ALMA-Beobachtungen weckt Erwartungen, dass sich auch weitere wichtige offene Fragen zur Entstehung massereicher Sterne klären lassen. Aufschluss erhoffen sich die Astronomen vor allem über eine Besonderheit: Sehr massereiche Sterne sind fast immer Teil von Doppel- oder Mehrfachsystemen. Hochaufgelöste Abbildungen der innersten Bereiche in den Frühphasen der Sterngeburt könnten direkt zeigen, wie sich die Vorläufer der verschiedenen Komponenten eines solchen Systems bilden.


Ansprechpartner

Dr. Markus Pössel
Öffentlichkeitsarbeit

Max-Planck-Institut für Astronomie, Heidelberg
Telefon: +49 6221 528-261

Fax: +49 6221 528-246

E-Mail: pr@mpia.de


Dr. Henrik Beuther
Max-Planck-Institut für Astronomie, Heidelberg
Telefon: +49 6221 528-447

E-Mail: beuther@mpia.de


Dr. Thomas Robitaille
Max-Planck-Institut für Astronomie, Heidelberg
Telefon: +49 6221 528-395

E-Mail: robitaille@mpia.de


Originalpublikation
Johnston et al.
A Keplerian-like disk around the forming O-type star AFGL 4176
Astrophysical Journal Letters, 29 October 2015

Quelle

Dr. Markus Pössel | Max-Planck-Institut für Astronomie, Heidelberg
Weitere Informationen:
https://www.mpg.de/9717881/wachstum-massereiche-sterne

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Sind Zeitreisen physikalisch möglich?
26.06.2017 | Goethe-Universität Frankfurt am Main

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften