Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie schwer sind Neutronensterne?

10.01.2018

Astrophysiker der Goethe-Universität finden neue Obergrenze für die Masse von Neutronensternen heraus: Sie darf nicht größer als 2,16 Sonnenmassen sein.

Seit der Entdeckung von Neutronensternen in den 1960er Jahren fragen sich Wissenschaftler, wie schwer diese massereichen Sterne werden können? Im Unterschied zu schwarzen Löchern können sie nicht beliebig viel Masse zulegen; wird eine bestimmte Massengrenze überschritten, gibt es im Universum keine physikalische Kraft mehr, die der enormen Gravitation entgegenwirken kann. Astrophysikern der Goethe-Universität Frankfurt ist es nun erstmals gelungen, eine strenge obere Grenze für diese maximale Masse von Neutronensternen zu berechnen.


Gravitationswellenemission während einer Neutronensternkollision.

AK Rezzolla, Goethe-Universität

Mit einem Radius von ungefähr zwölf Kilometern und einer Masse, die doppelt so groß werden kann wie die der Sonne, zählen Neutronensterne zu den dichtesten Objekten im Universum. Ihre Gravitationsfelder sind mit denen von schwarzen Löchern vergleichbar.

Während die meisten Neutronensterne eine Masse von ca. 1,4 Sonnenmassen haben, sind den Wissenschaftlern auch sehr massive Exemplare bekannt wie der Pulsar PSR J0348+0432, der es auf 2,01 Sonnenmassen bringt.

Die Dichte dieser Sterne ist gigantisch: Sie entspricht der Masse des gesamten Himalaya-Gebirges, komprimiert in einem bayrischen Maßkrug. Es gibt jedoch Hinweise dafür, dass ein Neutronenstern, dessen Maximalmasse sich derjenigen eines schwarzen Lochs nähert, kollabieren würde, sobald man ihm auch nur ein einziges Neutron hinzufügt.

Physiker Prof. Luciano Rezzolla, Senior Fellow des Frankfurt Institute for Advanced Studies (FIAS) und Professor für theoretische Astrophysik an der Goethe-Universität, löste nun zusammen mit seinen Studenten Elias Most und Lukas Weih dieses seit 40 Jahren erforschte Problem: Innerhalb einer Genauigkeit von wenigen Prozent kann die Maximalmasse von nicht-rotierenden Neutronensternen nicht größer als 2,16 Sonnenmassen sein.

Die Grundlage für dieses Ergebnis bildete der vor ein paar Jahren in Frankfurt erarbeitete Ansatz „universelle Beziehungen“ (https://aktuelles.uni-frankfurt.de/menschen/wann-kollabiert-ein-rotierender-neut...). Die Existenz „universellen Beziehungen“ impliziert, dass praktisch alle Neutronensterne „gleich aussehen“, so dass ihre Eigenschaften durch dimensionslose Größen ausgedrückt werden können. Diese Größen kombinierten die Wissenschaftler mit den Daten der Gravitationswellen und des darauf folgenden elektromagnetischen Signale (Kilonova), die im letzten Jahr während der Beobachtung von zwei verschmelzenden Neutronensternen durch das LIGO Experiment gewonnen wurden.

Das machte die Berechnungen deutlich einfacher, da diese unabhängig von der zugrunde liegenden Zustandsgleichung sind. Die Zustandsgleichung ist ein theoretisches Modell für die Beschreibung von dichter Materie innerhalb des Sterns und enthält Informationen über die Zusammensetzung in verschiedenen Tiefen innerhalb des Sterns. Folglich war die Existenz einer solchen universellen Beziehung essentiell, um die neue maximale Masse bestimmen zu können.

Dieses Resultat ist ein gutes Beispiel für das Zusammenspiel zwischen theoretischer und experimenteller Forschung. „Das Schöne an theoretischen Studien ist, dass sie Vorhersagen treffen können. Die Theorie ist aber zwingend auf Experimente angewiesen, um einige ihrer Unsicherheiten zu minimieren“, sagt Prof. Rezzolla. „Es ist gerade daher so erstaunlich, dass uns die Beobachtung einer einzigen Neutronensternkollision, die sich Millionen von Lichtjahren entfernt ereignet hat, in Kombination mit theoretisch gefundenen universellen Beziehungen ermöglicht hat, dieses Rätsels, über das schon so lange spekuliert worden ist, zu lösen.“

Die Ergebnisse der Studie wurden als Letter in „The Astrophysical Journal“ veröffentlicht. Einige Tage danach bestätigten auch Arbeitsgruppen aus Japan und den USA die Ergebnisse, obwohl sie bis dahin andere unabhängige Ansätze verwendeten.

Es ist wahrscheinlich, dass künftig mittels Gravitationswellenastronomie mehrere solcher Verschmelzungsereignisse beobachtet werden, sowohl in Form von Gravitationswellen als auch in traditionelleren elektromagnetischen Frequenzspektren. Dadurch lassen sich womöglich die Unsicherheiten in der maximalen Masse weiter reduzieren und somit auch das Verständnis von Materie unter extremen Bedingungen verbessern. Diese wird in modernen Teilchenbeschleunigern wie am CERN in der Schweiz oder bei FAIR in Deutschland simuliert.

Publikation: Luciano Rezzolla, Elias R. Most, Lukas R. Weih: Using Gravitational-wave Observations and Quasi-universal Relations to Constrain the Maximum Mass of Neutron Stars, The Astrophysical Journal Letters, Volume 852, Number 2, http://iopscience.iop.org/article/10.3847/2041-8213/aaa401, DOI: 10.3847/2041-8213/aaa401

Ein Bild zum Download finden Sie unter: www.uni-frankfurt.de/69863080

Bildtext: Gravitationswellenemission während einer Neutronensternkollision
Informationen: Prof. Luciano Rezzolla, Institut für Theoretische Physik, Campus Riedberg, Telefon: (069) 798 47871, rezzolla(at)th.physik.uni-frankfurt.de
Aktuelle Nachrichten aus Wissenschaft, Lehre und Gesellschaft in GOETHE-UNI online (www.aktuelles.uni-frankfurt.de)

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 mit privaten Mitteln überwiegend jüdischer Stifter gegründet, hat sie seitdem Pionierleistungen erbracht auf den Feldern der Sozial-, Gesellschafts- und Wirtschaftswissenschaften, Medizin, Quantenphysik, Hirnforschung und Arbeitsrecht. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein hohes Maß an Selbstverantwortung. Heute ist sie eine der drittmittelstärksten und drei größten Universitäten Deutschlands mit drei Exzellenzclustern in Medizin, Lebenswissenschaften sowie Geistes- und Sozialwissenschaften. Zusammen mit der Technischen Universität Darmstadt und der Universität Mainz ist sie Partner der länderübergreifenden strategischen Universitätsallianz Rhein-Main (siehe auch www.uni-frankfurt.de/59086401/rhein-main-allianz ). Internet: www.uni-frankfurt.de

Herausgeberin: Die Präsidentin der Goethe-Universität Redaktion: Katharina Frerichs, Abteilung PR & und Kommunikation, Theodor-W.-Adorno-Platz 1, 60323 Frankfurt am Main, Telefon 069 798-13001, E-Mail k.frerichs@em.uni-frankfurt.de

Dr. Anne Hardy | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Auf dem Weg zur optischen Kernuhr
19.04.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Laser erzeugt Magnet – und radiert ihn wieder aus
18.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics