Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie passt die Wiecker Brücke in ein menschliches Haar?

08.12.2015

Greifswalder Physiker arbeiten seit dem Sommer 2015 mit zwei neuen Großgeräten, die Forschung auf extrem kurzen Zeit- und kleinen Längenskalen erlauben. Mit Hilfe des Laserlithografiegeräts ist es möglich, dreidimensionale Elemente für die Medizinforschung zu produzieren. Als Teststruktur wurde die Wiecker Brücke um den Faktor 1:100.000 verkleinert – diese ist nun so klein, dass sie quer in ein Haar passt.

Das Forschungsgebiet der Arbeitsgruppe von Prof. Dr. Markus Münzenberg verbindet extreme Zeitskalen und extreme Längenskalen. Das Laserlithografiegerät erlaubt, kleinste Objekte mit höchster Präzision herzustellen.


Wiecker Brücke auf der Mikrometerskala abgebildet mit dem Elektronenmikroskop: Diese passt in ein Haar. Kleinste Details haben die Größe von weniger als einem Mikrometer (1 Mikrometer = 1/1 000 000 Meter). Foto: C. Denker/M. Medvidov


Arbeiten im Reinraum am Institut für Physik: Staubfreie Atmosphäre für Anwendungen der Nanotechnologie. Foto: J. Walowski/C. Denker

Dies ist notwendig zum Prozessieren von nanoelektronischen Bauelementen. Hier muss unter reinsten Bedingungen in Vollschutzmontur und unter Gelblicht gearbeitet werden, damit keine Staubpartikel die kleinsten Strukturen zerstören.

Hier ergeben sich auch Möglichkeiten dreidimensionale Elemente für die Medizinforschung herzustellen. In Zusammenarbeit mit dem Zentrum für Innovationskompetenz zur Erforschung von Herz-Kreislaufkrankheiten (ZIK-HIKE) können mit kleinen Nanometer-Kraftmessern in Zukunft Kräfte in einer einzelnen Herzzelle untersucht werden, um zum Beispiel im Bereich der Grundlagenforschung die Ursachen von Herzkrankheiten herauszufinden.

Als Teststruktur wurde die Wiecker Brücke in Greifswald mit den Originalabmessungen, verkleinert um den Faktor 1:100.000 mit dem dreidimensionalen Laserlithografiegerät hergestellt – diese würde dabei quer in ein Haar passen. Kleineste Details, die mit dem Gerät geschrieben werden können, sind nur 150 Nanometer groß.

Dies demonstriert, dass damit beliebige Strukturen für eine Vielzahl von Projekten am naturwissenschaftlichen Forschungscampus der Universität entwickelt werden können. Die Verwendung von Daten der Brücke für den Testlauf erfolgte mit freundlicher Genehmigung der Schmees & Lühn, Holz- und Stahlingenieurbau GmbH, und des Hafenamtes der Universitäts- und Hansestadt Greifswald.

Im Nanokosmos finden die Prozesse in Kristallen auf Femtosekunden Zeitskalen (1 Femtosekunde = 1/1 000 000 000 000 000 Sekunden) statt. So etwas geschieht zum Beispiel in Halbleiterchips im Computer in Materialien, die verlustfrei Strom leiten, sogenannten Supraleitern.

Für Wissenschaftler ist interessant, die Dynamik von Elektronen in extrem kurzen Zeitverläufen, die für die Eigenschaften der untersuchten Materialien verantwortlich sind, zu beobachten. Ein neues Lasersystem erlaubt die Kontrolle einzelner Lichtzyklen auf dieser Zeitskala. Dies ist durch speziell stabilisierte Laserpulse möglich.

Dieser Femtosekundenlaser ist jedoch nicht nur in der Festkörperforschung einsetzbar. Durch seine extrem hohe Energie, die in einem Puls gespeichert ist, ist dieser auch für die Erzeugung von Plasmen auf kleinstem Raum und in Projekten mit der Medizin interessant. Bei Tumortherapieexperimenten mit speziell markierten Krebszellen wurde dieser bereits eingesetzt.

Weitere Informationen
Institut der Physik http://www.physik.uni-greifswald.de/
Arbeitsgruppe Prof. Münzenberg http://www.physik.uni-greifswald.de/arbeitsgruppen/grenz-und-oberflaechenphysik-ag-muenzenberg.html


Die Fotos können für redaktionelle Zwecke im Zusammenhang mit dieser Pressemitteilung kostenlos heruntergeladen und genutzt werden. Dabei ist der Name des Fotografen zu nennen. Download http://tinyurl.com/o7mpaev

Ansprechpartner an der Universität Greifswald
Prof. Dr. Markus Münzenberg
Institut für Physik
Felix-Hausdorff-Straße 6
17489 Greifswald
Telefon 03834 86-4780
muenzenberg@physik.uni-greifswald.de

Jan Meßerschmidt | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Der überraschend schnelle Fall des Felix Baumgartner
14.12.2017 | Technische Universität München

nachricht Eine blühende Sternentstehungsregion
14.12.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was für IT-Manager jetzt wichtig ist

14.12.2017 | Unternehmensmeldung

30 Baufritz-Läufer beim 25. Erkheimer Nikolaus-Straßenlauf

14.12.2017 | Unternehmensmeldung

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungsnachrichten