Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie lange braucht ein Elektron, um zu tunneln?

24.08.2015

Die Kombination aus ab-initio numerischen Experimenten und Theorie zeigt, dass das optische Tunneln eines Elektrons aus einem Atom instantan stattfinden kann.

Wie viel Zeit benötigt ein Atom um ein Photon zu absorbieren und ein Elektron freizugeben? Und was wenn nicht ein, sondern viele Photonen benötigt werden für die Ionisation? Wieviel Zeit würde die Absorption von vielen Photonen beanspruchen?


Mittels der ARM-Theorie aus den mit TDSE Rechnungen numerisch erhaltenen Offset-Winkeln (rechte Achse) rekonstruierte Ionisationszeiten (linke Achse). Rote Kreise kennzeichnen die numerisch berechneten Offset-Winkel geteilt durch die Laserfrequenz, θ/ω. Blaue Rauten zeigen die Offset-Winkel mit der durch Subtraktion des Effekts der Pulseinhüllenden erhaltene Korrektur, ti0=θ/ω-|Δtienv(θ,ppeak)| . Grüne, umgekehrte Dreiecke zeigen die Coulomb-Korrektur zur Ionisationszeit, ausgewertet am Maximum der Photoelektronenverteilung, |ΔtiC(θ,ppeak|. Orangefarbene Dreiecke zeigen die von uns durch Anwendung der in Gleichung(4) in der Veröffentlichung definierten Rekonstruktionsprozedur erhaltenen Ionisationszeiten. In Bezug auf die Abbildung sind sie das Ergebnis der Subtraktion der grünen Kurve von der blauen Kurve. Abb.: MBI

Diese Fragen liegen im Kern der Attosekundenspektroskopie, welche zum Ziel hat Elektronenbewegung auf ihrer natürlichen Zeitskala aufzulösen.

Ionisation in starken Infrarotfeldern wird häufig als das Tunneln von Elektronen durch eine Potentialbarriere betrachtet. Dabei wird die Barriere durch die Kombination des atomaren Potentials, welches das Elektron bindet, und des elektrischen Feldes des Laserpulses, welches das Elektron fortzieht, gebildet. Daher sieht sich die Attosekundenspektroskopie unerwartet mit einer nahezu uralten und kontroversen Frage konfrontiert: Wie lange braucht ein Elektron, um durch eine Barriere zu tunneln?

In der Veröffentlichung von Torlina et al. wird dieser Frage anhand des sogenannten Attouhr-Aufbaus nachgegangen. Die Attouhr nutzt das rotierende elektrische Feld eines zirkular polarisierten Laserpulses als einen Zeiger der Uhr. Eine volle Umdrehung dieses Zeigers dauert eine Laserperiode, ungefähr 2,6 fs für Experimente mit 800 nm Pulsen eines Titan:Saphir-Lasers.

Mit dem rotierenden elektrischen Feld rotiert ebenfalls die Tunnelbarriere. Daher tunneln Elektronen, die zu unterschiedlichen Zeiten tunneln, in verschiedene Richtungen. Es ist diese Verknüpfung zwischen Zeit und Richtung der Elektronenbewegung, die es der Attouhr ermöglicht Zeiten zu messen.

In jeder Uhr muss der Zeitpunkt Null festgelegt werden. Bei der Attouhr geschieht dies durch die Anwendung eines sehr kurzen Laserpulses, der nur ein bis zwei Zyklen andauert. Der Tunnelvorgang findet in einem kleinen Zeitfenster statt, wenn das rotierende elektrische Feld sein Maximum durchläuft.

Weiterhin, wie jede andere Uhr, muss auch die Attouhr kalibriert werden. Man muss wissen wie die Zeit der Elektronenemission - des Austritts des Elektrons aus der Tunnelbarriere - auf den Winkel, unter dem das Elektron detektiert wird, abgebildet ist. Diese Kalibrierung der Attouhr wurde nun durch Torlina et al. erreicht, ohne Ad-hoc-Annahmen zur Natur des Ionisationsprozesses oder zum zugrundeliegenden physikalischen Bild zu treffen.

Mit der Kombination aus analytischer Theorie und akkuraten numerischen Experimenten, und nachdem die Attouhr kalibriert wurde, konnten die Autoren schließlich einen genauen Blick auf die Verzögerungen beim Elektronentunneln werfen. Sie gelangen zu der überraschenden Antwort: Diese Zeitverzögerung kann gleich Null sein. Zumindest im Bereich der nichtrelativistischen Quantenmechanik verbringt das aus dem Grundzustand des Wasserstoffatoms tunnelnde Elektron keine Zeit in der Tunnelbarriere.

Die Situation kann sich jedoch ändern, falls das Elektron auf seinem Weg auf andere Elektronen trifft, was in anderen Atomen oder in Molekülen wichtig werden kann. Die Wechselwirkung zwischen den Elektronen kann zu Verzögerungen führen.

Somit stellt die Attouhr ein einzigartiges Fenster dar, nicht nur zur Tunneldynamik, aber auch zum Wechselspiel der verschiedenen Elektronen, die am Ionisationsprozess teilnehmen, und wie die zurückbleibenden Elektronen sich dem Verlust ihrer Kameraden neu anpassen

Originalpublikation: Nature Physics
Lisa Torlina, Felipe Morales, Jivesh Kaushal, Igor Ivanov, Anatoli Kheifets, Alejandro Zielinski, Armin Scrinzi, Harm Geert Muller, Suren Sukiasyan, Misha Ivanov, Olga Smirnova, Nature Physics 11, 503-508 (2015) (DOI:10.1038/NPHYS3340)https://www.nature.com/nphys/journal/v11/n6/full/nphys3340.html

Kontakt
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI)
Max-Born-Str. 2A
12489 Berlin
Dr. Olga Smirnova
smirnova@mbi-berlin.de
+49 (0) 30 6392 1340
Prof. Dr. Mikhail Ivanov
mivanov@mbi-berlin.de
+49 (0) 30 6392 1210

Weitere Informationen:

http://www.mbi-berlin.de

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultra-sensitiv dank quantenmechanischer Verschränkung
28.06.2017 | Universität Stuttgart

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

EUROSTARS-Projekt gestartet - mHealth-Lösung: time4you Forschungs- und Entwicklungspartner bei IMPACHS

28.06.2017 | Unternehmensmeldung

Proteine entdecken, zählen, katalogisieren

28.06.2017 | Biowissenschaften Chemie

Neue Scheinwerfer-Dimension: Volladaptive Lichtverteilung in Echtzeit

28.06.2017 | Automotive