Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie lange braucht ein Elektron, um zu tunneln?

24.08.2015

Die Kombination aus ab-initio numerischen Experimenten und Theorie zeigt, dass das optische Tunneln eines Elektrons aus einem Atom instantan stattfinden kann.

Wie viel Zeit benötigt ein Atom um ein Photon zu absorbieren und ein Elektron freizugeben? Und was wenn nicht ein, sondern viele Photonen benötigt werden für die Ionisation? Wieviel Zeit würde die Absorption von vielen Photonen beanspruchen?


Mittels der ARM-Theorie aus den mit TDSE Rechnungen numerisch erhaltenen Offset-Winkeln (rechte Achse) rekonstruierte Ionisationszeiten (linke Achse). Rote Kreise kennzeichnen die numerisch berechneten Offset-Winkel geteilt durch die Laserfrequenz, θ/ω. Blaue Rauten zeigen die Offset-Winkel mit der durch Subtraktion des Effekts der Pulseinhüllenden erhaltene Korrektur, ti0=θ/ω-|Δtienv(θ,ppeak)| . Grüne, umgekehrte Dreiecke zeigen die Coulomb-Korrektur zur Ionisationszeit, ausgewertet am Maximum der Photoelektronenverteilung, |ΔtiC(θ,ppeak|. Orangefarbene Dreiecke zeigen die von uns durch Anwendung der in Gleichung(4) in der Veröffentlichung definierten Rekonstruktionsprozedur erhaltenen Ionisationszeiten. In Bezug auf die Abbildung sind sie das Ergebnis der Subtraktion der grünen Kurve von der blauen Kurve. Abb.: MBI

Diese Fragen liegen im Kern der Attosekundenspektroskopie, welche zum Ziel hat Elektronenbewegung auf ihrer natürlichen Zeitskala aufzulösen.

Ionisation in starken Infrarotfeldern wird häufig als das Tunneln von Elektronen durch eine Potentialbarriere betrachtet. Dabei wird die Barriere durch die Kombination des atomaren Potentials, welches das Elektron bindet, und des elektrischen Feldes des Laserpulses, welches das Elektron fortzieht, gebildet. Daher sieht sich die Attosekundenspektroskopie unerwartet mit einer nahezu uralten und kontroversen Frage konfrontiert: Wie lange braucht ein Elektron, um durch eine Barriere zu tunneln?

In der Veröffentlichung von Torlina et al. wird dieser Frage anhand des sogenannten Attouhr-Aufbaus nachgegangen. Die Attouhr nutzt das rotierende elektrische Feld eines zirkular polarisierten Laserpulses als einen Zeiger der Uhr. Eine volle Umdrehung dieses Zeigers dauert eine Laserperiode, ungefähr 2,6 fs für Experimente mit 800 nm Pulsen eines Titan:Saphir-Lasers.

Mit dem rotierenden elektrischen Feld rotiert ebenfalls die Tunnelbarriere. Daher tunneln Elektronen, die zu unterschiedlichen Zeiten tunneln, in verschiedene Richtungen. Es ist diese Verknüpfung zwischen Zeit und Richtung der Elektronenbewegung, die es der Attouhr ermöglicht Zeiten zu messen.

In jeder Uhr muss der Zeitpunkt Null festgelegt werden. Bei der Attouhr geschieht dies durch die Anwendung eines sehr kurzen Laserpulses, der nur ein bis zwei Zyklen andauert. Der Tunnelvorgang findet in einem kleinen Zeitfenster statt, wenn das rotierende elektrische Feld sein Maximum durchläuft.

Weiterhin, wie jede andere Uhr, muss auch die Attouhr kalibriert werden. Man muss wissen wie die Zeit der Elektronenemission - des Austritts des Elektrons aus der Tunnelbarriere - auf den Winkel, unter dem das Elektron detektiert wird, abgebildet ist. Diese Kalibrierung der Attouhr wurde nun durch Torlina et al. erreicht, ohne Ad-hoc-Annahmen zur Natur des Ionisationsprozesses oder zum zugrundeliegenden physikalischen Bild zu treffen.

Mit der Kombination aus analytischer Theorie und akkuraten numerischen Experimenten, und nachdem die Attouhr kalibriert wurde, konnten die Autoren schließlich einen genauen Blick auf die Verzögerungen beim Elektronentunneln werfen. Sie gelangen zu der überraschenden Antwort: Diese Zeitverzögerung kann gleich Null sein. Zumindest im Bereich der nichtrelativistischen Quantenmechanik verbringt das aus dem Grundzustand des Wasserstoffatoms tunnelnde Elektron keine Zeit in der Tunnelbarriere.

Die Situation kann sich jedoch ändern, falls das Elektron auf seinem Weg auf andere Elektronen trifft, was in anderen Atomen oder in Molekülen wichtig werden kann. Die Wechselwirkung zwischen den Elektronen kann zu Verzögerungen führen.

Somit stellt die Attouhr ein einzigartiges Fenster dar, nicht nur zur Tunneldynamik, aber auch zum Wechselspiel der verschiedenen Elektronen, die am Ionisationsprozess teilnehmen, und wie die zurückbleibenden Elektronen sich dem Verlust ihrer Kameraden neu anpassen

Originalpublikation: Nature Physics
Lisa Torlina, Felipe Morales, Jivesh Kaushal, Igor Ivanov, Anatoli Kheifets, Alejandro Zielinski, Armin Scrinzi, Harm Geert Muller, Suren Sukiasyan, Misha Ivanov, Olga Smirnova, Nature Physics 11, 503-508 (2015) (DOI:10.1038/NPHYS3340)https://www.nature.com/nphys/journal/v11/n6/full/nphys3340.html

Kontakt
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI)
Max-Born-Str. 2A
12489 Berlin
Dr. Olga Smirnova
smirnova@mbi-berlin.de
+49 (0) 30 6392 1340
Prof. Dr. Mikhail Ivanov
mivanov@mbi-berlin.de
+49 (0) 30 6392 1210

Weitere Informationen:

http://www.mbi-berlin.de

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall
22.08.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten
21.08.2017 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer IPM präsentiert »Deep Learning Framework« zur automatisierten Interpretation von 3D-Daten

22.08.2017 | Informationstechnologie

Globale Klimaextreme nach Vulkanausbrüchen

22.08.2017 | Geowissenschaften

RWI/ISL-Containerumschlag-Index erreicht neuen Höchstwert

22.08.2017 | Wirtschaft Finanzen