Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie ein Molekül aus dem Rotieren kommt

18.03.2016

Das im Weltraum häufige Molekülion CH+ wurde erstmals unter interstellaren Bedingungen im neuen ultrakalten Speicherring (Cryogenic Storage Ring, CSR) des Heidelberger MPI für Kernphysik untersucht. Im Ring lassen sich Umgebungstemperaturen unterhalb von 10 K realisieren. Gemessen wurde die Aufspaltung von CH+ in C+ und H durch ultraviolettes Licht bei einer Energie nahe der Reaktionsschwelle. Der experimentelle Befund wird durch theoretische Rechnungen sehr gut reproduziert und erlaubt, die zeitabhängige Besetzung der einzelnen Rotationszustände zu ermitteln. Damit wurde das Potential des CSR für kontrollierte Experimente mit kalten Molekülionen erfolgreich demonstriert.

Die organische Chemie interstellarer Molekülwolken ist eines der spannendsten Forschungsgebiete der Astronomie, da viele Beobachtungen noch Rätsel aufgeben und die Entstehung des Lebens auf der Erde möglicherweise eng mit der Bildung biologisch relevanter Moleküle im Weltraum verknüpft ist.


Überlagerung des im CSR gespeicherten CH+-Molekülionenstrahls (gelb) mit einem UV-Laser (blau). Die neutralen H-Atome aus der Photodissoziation geradeaus mit einem Detektor nachgewiesen.

Grafik: MPIK für Kernphysik


Relative Besetzung der drei untersten Rotationszustände von CH+ in Abhängigkeit von der Speicherzeit im CSR. Die gemessenen Daten lassen sich am besten mit einer Temperatur von etwa 20 K modellieren.

Grafik: MPIK für Kernphysik

Diese Prozesse spielen sich viele Lichtjahre entfernt ab und entziehen sich damit einer kontrollierten Untersuchung. Deshalb sind Astrophysiker auf deren theoretische Modellierung angewiesen. Das Bindeglied stellt die Laborastrophysik dar, welche es erlaubt, Reaktionen der vorgefundenen Spezies im Labor unter Weltraumbedingungen nachzustellen. Die so gewonnenen Resultate lassen sich mit den astronomischen Beobachtungen vergleichen und erlauben einen direkten Test der theoretischen Beschreibung.

Weltraum im Labor

Zur Untersuchung von kosmischen Molekülionen steht am Heidelberger Max-Planck-Institut für Kernphysik (MPIK) seit kurzem der neue ultrakalte Speicherring CSR (Cryogenic Storage Ring) zur Verfügung. Diese weltweit größte Anlage ihrer Art mit einem Umfang von 35 m lässt sich auf eine Temperatur von ca. –265 °C, also wenige Grad über den absoluten Nullpunkt abkühlen und im Inneren ein extremes Ultrahochvakuum von weniger als 10–13 mbar realisieren, das ist um das Zehn-Billiardenfache geringer als der normale Luftdruck.

Damit werden die Bedingungen interstellarer Wolken (niedrige Temperatur, sehr geringe Dichte) erreicht, und das sehr gute Vakuum ermöglicht es, die Ionen mit geringen Verlusten durch Stöße mit Restgasmolekülen über längere Zeit bis zu mehreren Stunden zu speichern.

Zu den wichtigsten Prozessen in interstellaren Wolken zählen sowohl Kollisionen von Molekülen bzw. Molekülionen untereinander als auch mit freien Elektronen sowie die Wechselwirkung mit ultraviolettem (UV) Licht, das von benachbarten Sternen ausgestrahlt wird.

Um diese im Detail zu studieren, ist der CSR mit einer entsprechenden Instrumentierung ausgerüstet. In einer ersten Publikation zu einem CSR-Experiment berichten Physiker der CSR-Kollaboration nun über das Zerbrechen des Molekülions CH+ durch UV-Licht.

Das erste kosmische Molekülion

CH+ war das erste kosmische Molekülion, das 1941 spektroskopisch identifiziert wurde. Es besteht aus einem Kohlenstoff- und einem Wasserstoffatom, wobei aber ein Elektron fehlt. Das recht häufige Vorkommen von CH+ im diffusen interstellaren Medium ist dabei bis heute rätselhaft: Eigentlich sollte es durch Kollisionen mit Wasserstoff rasch zerstört werden, und es ist unbekannt, wie es in einer so kalten Umgebung effizient neu gebildet wird. Ein Puzzleteil ist die Photodissoziation von CH+, wobei das Molekül nach Absorption eines UV-Lichtquants in ein einfach geladenes Kohlenstoffion (C+) und ein neutrales Wasserstoffatom (H) aufbricht.

Hierzu wird auf einer geraden Strecke im Speicherring der Ionenstrahl in spitzem Winkel mit einem UV-Laserstrahl überlagert. Zum Nachweis dienen die in der Reaktion freigesetzten H-Atome. In der nächsten Kurve des Rings, wo die Ionen elektrisch abgelenkt werden, fliegen sie geradeaus auf einen Detektor. „Wir haben die Zahl der H-Atome in Abhängigkeit von der Energie des UV-Lichts und der Speicherzeit gemessen“, erläutert Aodh O'Connor, Postdoc in der ASTROLAB-Gruppe um Holger Kreckel am MPIK.

„Besonders interessant ist der Bereich der Dissoziationsschwelle, also der minimalen Energie, die zum Aufbruch der chemischen Bindung benötigt wird. Steckt im Molekül noch Rotationsenergie, so ist die Schwelle um diesen Betrag abgesenkt, und wir können verfolgen, wie das anfänglich heiße und heftig rotierende CH+ im Ring abkühlt.“ Nach etwa einer Minute Speicherzeit sind nur noch die beiden niedrigsten Rotationszustände besetzt und nach vier Minuten rotieren 60% der Moleküle gar nicht mehr. Dies entspricht einer Temperatur von etwa 20 Grad über dem absoluten Nullpunkt.

Den molekularen Kühlvorgang verfolgt

Unterstützt wurde die Auswertung durch theoretische Rechnungen zur Photodissoziation nahe der Schwelle, die von Ulrich Hechtfischer durchgeführt wurden. Die Wahrscheinlichkeit für den photochemischen Aufbruch ist hier bei bestimmten Energien durch Resonanzen deutlich erhöht und hängt empfindlich von der Struktur der Elektronenhülle des Moleküls ab.

Die Rechnungen wurden für die einzelnen Rotationszustände durchgeführt und stimmen mit den experimentellen Resultaten sehr gut überein. Dies erlaubt nicht nur, den Kühlvorgang des Moleküls zu verfolgen, sondern liefert auch ein besseres Verständnis der Struktur von CH+. Dies kann relevant sein für verbesserte Rechnungen zum umgekehrten Prozess der radiativen Assoziation von C+ und H zu CH+ und Aussendung eines UV-Quants – ein möglicher Mechanismus zur Bildung von CH+ bei interstelleren Temperaturen.

„Unser Experiment zeigt, dass sich mit dem CSR molekulare Reaktionen unter Weltraumbedingungen untersuchen lassen“, sagt Holger Kreckel mit Blick auf das Potential dieses neuen Großgeräts für zukünftige Studien. Hierzu zählt der Einfang von Elektronen in Mokekülionen, wozu momentan ein neues Elektronentarget in den Ring eingebaut wird. Ein weiteres Thema sind Stöße von geladenen Molekülionen und neutralen Atomen. Diese spielen eine große Rolle in der interstellaren Chemie, sind aber experimentell noch wenig untersucht.

Originalpublikation:

Photodissociation of an internally cold beam of CH+ ions in a cryogenic storage ring
A.P. O'Connor et al.
Physical Review Letters 116, 113002, 17. März 2016; DOI: http://dx.doi.org/10.1103/PhysRevLett.116.113002

Kontakt:

Dr. Aodh O’Connor
Tel: +49 6221 516 425
E-Mail: aodh.oconnor@mpi-hd.mpg.de

Dr. Holger Kreckel
Tel.: +49 6221 516 517
E-Mail: holger.kreckel@mpi-hd.mpg.de

Prof. Dr. Andreas Wolf
Tel.: +49 6221 516 503
E-Mail: andreas.wolf@mpi-hd.mpg.de

Weitere Informationen:

https://www.mpi-hd.mpg.de/mpi/astrolab/astrolab-home/ Gruppe „Kalte Kollisionen und Wege zum Leben im interstellaren Raum“ (ASTROLAB) am MPIK
https://www.mpi-hd.mpg.de/blaum/ Abteilung „Gespeicherte und gekühlte Ionen“ am MPIK
https://www.mpi-hd.mpg.de/mpi/aktuelles/meldung/detail/tiefkalte-molekuele-auf-d... „Tiefkalte Moleküle auf der Umlaufbahn“ (MPIK-Presseinformation vom 20.05.2015)

Dr. Bernold Feuerstein | Max-Planck-Institut für Kernphysik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie