Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Widerstand unter Druck

18.04.2014

Ein unkonventioneller Supraleiter leitet Strom bei höheren Temperaturen verlustfrei, wenn er gestaucht oder gedehnt wird

Manche Supraleiter bleiben Physikern ein hartnäckiges Rätsel. Warum sie elektrischen Strom bei sehr tiefen Temperaturen ohne Widerstand leiten lässt sich mit der gängigen Theorie der Supraleitung nicht erklären.


Zug und Druck für Präzisionsexperimente: Um zu untersuchen, wie der exotische Supraleiter Strontium-Ruthenat auf Dehnung und Stauchung reagiert, spannen Dresdner Max-Planck-Forscher eine Probe des Materials in einen Halter zwischen den beiden rechten Schrauben in der Bildmitte. Rechts davon sitzen drei in einer Reihe angeordnete Piezokristalle, die mit gelöteten Stromkontakten versehen sind. Der mittlere Piezokristall setzt die Probe unter Druck, wenn eine Spannung an ihn angelegt wird und er sich ausdehnt. Die äußeren Piezokristalle schieben einen Bügel, der mit dem fernen Probenende verbunden ist, nach links und bewirken so einen Zug an der Probe.

© MPI für Chemische Physik fester Stoffe

Wenn Physiker solche unkonventionellen, also „exotischen“, Supraleiter enträtseln könnten, kämen sie der Herstellung von künstlichen Materialien näher, die Strom bei Raumtemperatur verlustfrei leiten und so beim Energiesparen helfen könnten. Forscher des Max-Planck-Institutes für Chemische Physik fester Stoffe in Dresden haben nun im Rahmen einer internationalen Kollaboration eine Messtechnik entwickelt, mit der sich unkonventionelle Supraleiter effizient und präzise untersuchen lassen.

Bei der ersten Anwendung ihrer Druckkammer demonstrierten sie, dass der Supraleiter Strontium-Ruthenat bei deutlich höheren Temperaturen als normalerweise supraleitend wird, wenn er gedehnt oder gestaucht wird. Dies erlaubt neue Einblicke in die Natur der Supraleitung bei diesem Material. Darüber hinaus wird die Dresdener Methode die Erforschung eines breiten Feldes von supraleitenden Materialien erleichtern, sind die Wissenschaftler überzeugt.

Wollen Physiker die unbekannte Welt der exotischen Supraleiter erkunden, brauchen sie bildhaft gesprochen Fahrzeuge, die sie in die unerforschten Regionen bringen. Supraleiter geben, genau wie andere Materialien auch, Wichtiges über ihre Physik preis, indem man von außen auf sie einwirkt und prüft, wie sie reagieren. So lassen sich beispielsweise die Temperatur variieren oder der Druck. Verändert sich dadurch die Sprungtemperatur, also jene Temperatur, die die Grenze zwischen dem normal leitenden und dem supraleitenden Zustand markiert? Und wenn ja, wie? Der unkonventionelle Supraleiter Strontium-Ruthenat hielt für die Forscher des Max-Panck-Instituts für Chemische Physik fester Stoffe bei einer solchen Prüfung Überraschungen bereit.

Das Erkundungsfahrzeug, das die Dresdener Forscher um Clifford W. Hicks entwickelt haben, stauchte und dehnte eine Probe aus Strontium-Ruthenat ein Stückchen. Dadurch rücken die Atome des Materials zusammen, oder sie entfernen sich voneinander. Dies wiederum verändert die Wechselwirkung zwischen den Elektronen im Supraleiter, welche entscheidend für die Entstehung der Supraleitung ist. Bei allen Supraleitern verbinden sich jeweils zwei Elektronen miteinander zu einem Paar. Diese so genannten Cooper-Paare bewegen sich auf andere Weise als einzelne Elektronen durch das Material, was letztlich zum Verschwinden des elektrischen Widerstandes führt.

Unkonventionelle Supraleiter reagieren auf Druck anders als konventionelle

Zwischen den Cooper-Paaren verschiedener Supraleitertypen gibt es wesentliche Unterschiede. Bei herkömmlichen Supraleitern zeigen die Cooper-Paare keinen Magnetismus, da sich die die magnetischen Momente der beiden Elektronen einander entgegengesetzt ausrichten. Bei Strontium-Ruthenat hingegen richten sich die magnetischen Momente der Elektronen parallel aus. Sie sind wie zwei Kompassnadeln, die beide in die gleiche Richtung weisen. Da sich die magnetischen Momente dadurch verstärken statt zu neutralisieren, bleiben die Cooper-Paare magnetisch und der Supraleiter reagiert anders auf äußere Magnetfelder als ein herkömmlicher.

Die Andersartigkeit drückt sich durch eine charakteristische Reaktion auf äußere Einflüsse aus. Theoretische Physiker erwarteten, dass der unkonventionelle Supraleiter stärker auf äußeren Druck reagieren sollte als konventionelle Supraleiter. Um dies zu testen, entwickelten Forscher um Andrew P. Mackenzie, der vor kurzem von der schottischen University of St. Andrews an das Max-Planck-Institut für Chemische Physik fester Stoffe nach Dresden wechselte, eine Druckzelle. Diese haben die Physiker so konzipiert, dass sie im Kühlgerät, das die für die Supraleitung nötigen Temperaturen knapp über dem absoluten Nullpunkt (minus 273 Grad Celsius) bereitstellt, mit geringem experimentellen Aufwand präzise geregelt werden kann.

Der Probenhalter enthält drei so genannte Piezokristalle, die ihre Länge bei Anlegen einer elektrischen Spannung vergrößern. Zwei davon sind über einen U-förmigen Bügel mit der Probe verbunden, sodass der Bügel unter Zug gerät, wenn die Piezokristalle länger werden. Ein dritter Piezokristall ist direkt mit der Probe gekoppelt, sodass diese bei Anlegen der Spannung einen Druck erfährt. Die Vorrichtung erlaubte es den Forschern, den supraleitenden Kristall genau kontrolliert zu dehnen und zu stauchen. Da Kristalle entlang verschiedener Richtungen unterschiedliche physikalische Eigenschaften aufweisen können, ist es auch wichtig, dass mit der Druckkammer auch in bestimmten Kristallrichtungen Druck ausgeübt werden kann.

Bereits unter geringem Zug oder Druck steigt die Sprungtemperatur um 40 Prozent

Das überraschende Ergebnis der Dresdener Versuche: Die Sprungtemperatur stieg schon bei sehr kleinen Dehnungen und Stauchungen von wenigen Promille der Ausgangslänge um mehr als 40 Prozent, nämlich von rund 1,3 Kelvin auf über 1,9 Kelvin. Die Kelvinn-Temperaturskala beginnt am absoluten Nullpunkt; ein Kelvin entspricht minus 272,15 Grad Celsius. Der starke Anstieg der Sprungtemperatur nahm, entgegen der Erwartung, einen parabelförmigen Verlauf. Entlang einer anderen Kristallrichtung beobachteten die Forscher hingegen eine deutlich schwächere Änderung der Sprungtemperatur. Bei Zug stieg sie in dieser Kristallrichtung leicht, bei Druck nahm sie ab.

Die Dresdener Ergebnisse geben theoretischen Physikern nun Randbedingungen für die Erklärung der exotischen Supraleitung von Strontium-Ruthenat in die Hand. Auf deren Basis können sie bestimmte Modelle verwerfen oder favorisieren.

Auch dem Verständnis einer andere Form exotischer Supraleiter, der so genannten Hochtemperatur-Supraleiter, könnten sich Physiker auf diese Weise nähern. Hochtemperatur-Supraleiter verlieren ihren elektrischen Widerstand zwar bei deutlich höheren Temperaturen als Strontium-Ruthenat und andere Stoffe, aber immer noch weit unter dem Gefrierpunkt. Die Physiker um Mackenzie erwarten jedenfalls, dass ihre neu entwickelte Technik den Weg für viele neue Experimente frei macht.

Ansprechpartner 

Dr. Helge Rosner
Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden
Telefon: +49 351 4646-2233
Fax: +49 351 4646-4002
E-Mail:rosner@cpfs.mpg.de
 
Prof. Dr. Andrew Mackenzie
Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden
Telefon: +49 351 4646-5900
Fax: +49 351 4646-5902
E-Mail:Mackenzie@cpfs.mpg.de
 

Originalpublikation

 
Clifford W. Hicks, Daniel O. Brodsky, Edward A. Yelland, Alexandra S. Gibbs, Jan A. N. Bruin, Mark E. Barber, Stephen D. Edkins, Keigo Nishimura, Shingo Yonezawa, Yoshiteru Maeno und Andrew P. Mackenzie
Strong Increase of Tc of Sr2RuO4 Under Both Tensile and Compressive Strain
Science, 18. April 2014; doi: 10.1126/science.1248292

Dr. Helge Rosner | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/8142089/supraleiter_sprungtemperatur_druck_zug

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Klein bestimmt über groß?
29.03.2017 | Max-Planck-Institut für Dynamik und Selbstorganisation

nachricht Quantenkommunikation: Wie man das Rauschen überlistet
29.03.2017 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten