Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Widerstand schlägt Wellen

20.12.2013
Das Verständnis, unter welchen Bedingungen Supraleitung entsteht und wie sie sich bei praxistauglichen Temperaturen realisieren lässt, wächst

Auch die Physik kann Hinweise zum Energiesparen geben. Eine internationale Kollaboration im Rahmen des Zentrums für Quantenmaterialien, das die Max Planck Gesellschaft gemeinsam mit der University of British Columbia (Kanada) betreibt, kann Materialwissenschaftlern nun Tipps für die Entwicklung von Hochtemperatur-Supraleitern geben, damit diese den Namen auch verdienen.


Ein Blick in einen Hochtemperatur-Supraleiter: Mit resonanter Röntgenstreuung haben die Stuttgarter Max-Planck-Forscher Ladungsdichtewellen im Inneren von Kuprat-Supraleitern nachgewiesen. Die einfallende und austretende Strahlung ist durch die blauen Wellenlinien angedeutet. Das Koordinatensystem veranschaulicht, wie die Strahlung relativ zu den Kristallachsen a,b und c orientiert ist.

© MPI für Festkörperforschung

Derzeit firmieren unter diesem Titel etwa keramische Kuprate, die ihren elektrischen Widerstand zwar bei deutlich höheren Temperaturen verlieren als konventionelle Supraleiter, aber immer noch weit unter dem Gefrierpunkt von Wasser. Die Physiker haben nun in zwei komplementären Arbeiten festgestellt, dass die Supraleitung in Kupraten bei höchstens minus 135 Grad Celsius zusammenbricht, weil sich darin Ladungsdichtewellen ausbilden. Diese periodischen Schwankungen in der Verteilung der elektrischen Ladungen zerstören die Supraleitung. Um Supraleiter zu finden, die bei praxistauglichen Temperaturen ihren Widerstand aufgeben, müssen Materialwissenschaftler daher nach Substanzen suchen, in denen die Ladungsdichtewellen nicht auftreten.

Ein Blick in einen Hochtemperatur-Supraleiter: Mit resonanter Röntgenstreuung haben die Stuttgarter Max-Planck-Forscher Ladungsdichtewellen im Inneren von Kuprat-Supraleitern nachgewiesen. Die einfallende und austretende Strahlung ist durch die blauen Wellenlinien angedeutet. Das Koordinatensystem veranschaulicht, wie die Strahlung relativ zu den Kristallachsen a,b und c orientiert ist.

Knapp zwei Prozent der elektrischen Energie, die Kraftwerke produzieren, geht im Stromnetz verloren. Das entspricht alleine in Deutschland der Strommenge, die ein mittelgroßes Kohlekraftwerk liefert. Und die Verluste dürften noch steigen, wenn Strom künftig etwa von großen offshore-Windparks auch in den Süden der Republik transportiert wird. Supraleiter könnten da Abhilfe schaffen – wenn sie Strom auch noch bei sommerlichen Temperaturen ohne Verluste zum Verbraucher brächten. Um systematisch nach solchen Materialien suchen zu können, müssen sich Physiker aber erst ein genaues Bild verschaffen, warum die derzeit besten Supraleiter überhaupt ihren Widerstand verlieren und wie sich die Temperatur, bei der das geschieht, nach oben schrauben lässt – ein Puzzle, an dem Forscher seit rund 30 Jahren tüfteln. Doch allmählich werden die Konturen erkennbar. Nun fügt eine internationale Kollaboration, in der neben dem Max-Planck-Institut für Festkörperforschung die Universitäten Princeton und British Columbia sowie das Helmholtz-Zentrum Berlin für Materialien und Energie tragende Rollen spielen, mit zwei Arbeiten weitere Puzzlesteine in das Bild ein.

„Wir haben in Kupraten oberhalb der Temperaturen, bei denen sie supraleitend werden, Ladungsdichtewellen gefunden“, sagt Bernhard Keimer. „Diese werden wie die Supraleitung von den starken Wechselwirkungen zwischen den Elektronen verursacht.“ Der Direktor am Max-Planck-Institut für Festkörperforschung in Stuttgart war an einer der beiden Arbeiten direkt und an der anderen beratend beteiligt.

Im Wettstreit der Zustände entscheidet eine Nasenlänge

Dass Elektronen stark miteinander wechselwirken, ist eine Voraussetzung, damit Supraleitung überhaupt entstehen kann – das wissen Physiker schon lange. Denn die Kräfte – nach dem derzeitigen Forschungsstand handelt es sich um magnetische Kräfte – schweißen je zwei Elektronen zu Cooperpaaren zusammen, die ungebremst durch das Kristallgitter sausen. Schon lange wissen die Forscher auch, dass die starken Wechselwirkungen noch andere elektronische Phänomene hervorrufen können: Magnetismus etwa oder eben die Ladungsdichtewellen, die sich mit der Supraleitung überhaupt nicht vertragen.

„Diese verschiedenen Zustände konkurrieren in den Materialien miteinander“, erklärt Keimer. „Welcher sich durchsetzt, entscheidet sich oft nur durch eine Nasenlänge Vorsprung.“ Das heißt, ob ein Material supraleitend ist oder nicht, hängt ausgesprochen empfindlich davon ab, aus welchen Elementen es besteht und welche Struktur es bildet. Nicht zuletzt mischt dabei aber auch der Zufall mit. Auch dank der aktuellen Arbeiten bekommen die Physiker jedoch ein immer besseres Gefühl dafür, unter welchen Umständen Supraleitung auftritt. „Wir kommen also dem Ziel näher, diesen Zustand vorhersagen zu können und somit Materialien zu entwickeln, die schon bei hohen Temperaturen supraleitend werden“, sagt der Physiker.

Zum besseren Verständnis der Supraleitung trägt die Kollaboration nun mit Experimenten an zwei Materialien bei, die neben Kupferoxid als charakteristische Komponente Bismuth enthalten und entsprechend der verschiedenen Anteile der Elemente Bi2201 und Bi2212 genannt werden. Jeweils eine einzige Probe des Materials untersuchten die Forscher mit verschiedenen Methoden: Beide Materialien durchleuchteten die Stuttgarter Max-Planck-Forscher mit resonanter Röntgenstreuung, und zwar in Zusammenarbeit mit einer Arbeitsgruppe des Helmholtz-Zentrums Berlin am dortigen Synchrotron BESSY. Diese Experimente enthüllten Details über die Ladungsverteilung im Inneren der Materialien. Anschließend reiste einer der beteiligten Wissenschaftler mit dem luftdicht verschlossenen Material im Koffer zur Princeton-University. Dort tasteten die Projektpartner die Probe mit einem Rastertunnel-Mikroskop ab, das die Ladungsverteilung an der Oberfläche erfasst. Die Bi2201-Probe untersuchten Physiker der University of British Columbia zudem mit der winkelaufgelösten Photoelektronen-Spektroskopie, die weitere Einzelheiten der elektronischen Struktur an der Oberfläche des Materials offenlegt.

Ladungsdichtewellen treten in allen Kuprat-Supraleitern auf

Mithilfe der sich ergänzenden Untersuchungen wiesen die Forscher für beide Proben nach, dass die Ladungswellen in verschiedenen bismuthhaltigen Kupraten auftreten, und zwar im gesamten Material und nicht etwa nur an der Oberfläche. „Da wir die Ladungsdichtewellen vorher schon an einem anderen Kuprat-Supraleiter gefunden haben, können wir davon ausgehen, dass sie in allen Kuprat-Supraleitern auftreten und die Supraleitung zestören“, sagt Bernhard Keimer.

Mit einer der beiden Arbeiten vervollständigten die Wissenschaftler das Puzzle der Hochtemperatur-Supraleitung aber noch an anderer Stelle. Sie können nämlich Auffälligkeiten in der Bandstruktur dieser Materialien erklären. Die Bandstruktur ist eine Art Masterplan des elektronischen Verhaltens von Materialien. Aus ihr kann man etwa ablesen, ob es sich um einen metallischen Leiter, einen Isolator oder einen Halbleiter handelt. Sie gibt nämlich wieder, ob Elektronen fest gebunden sind, ob sie sich frei durch das Material bewegen können oder ob sie mit einem Energieschub eine Bandlücke überwinden müssen, um freie Beweglichkeit zu erlangen.

Das Ziel: eine genaue Kontrolle der starken elektronischen Kräfte

Bei Supraleitern treten in der Bandstruktur Pseudolücken auf. Sie heißen so, weil die Lücken anders als in einem Isolator nicht vollständig sind und für Elektronen bestimmter Geschwindigkeiten überhaupt nicht existieren. Für viele Elektronen bedeutet die Pseudolücke jedoch, dass die Ladungsträger sich nicht mehr ungehindert durch das Material bewegen können. „Wir haben jetzt festgestellt, dass die Ursache der Pseudolücke in den Ladungsdichtewellen liegt“, sagt Bernhard Keimer. Das lässt sich auch gut nachvollziehen: Wenn die Elektronen eine feste Ordnung einnehmen, verlieren sie ihre Beweglichkeit. „Letztlich lassen sich Pseudolücken also auch auf die starken Wechselwirkungen der Elektronen zurückführen“, so Keimer.

In Zukunft wird es also darum gehen, die starken Wechselwirkungen der Elektronen exakt kontrollieren zu können. Nur dann können Physiker und Materialwissenschaftler die Kräfte so kanalisieren, dass diese auch bei normaler Umgebungstemperatur zum Kitt der Cooperpaare werden und nicht etwa Ladungsdichtewellen erzeugen. „Wenn wir das schaffen, können wir einen wichtigen Beitrag für die Energieversorgung der Zukunft leisten“, sagt Bernhard Keimer.

Ansprechpartner
Prof. Dr. Bernhard Keimer
Max-Planck-Institut für Festkörperforschung, Stuttgart
Telefon: +49 711 689-1650
Fax: +49 711 689-1632
E-Mail: B.Keimer@fkf.mpg.de
Originalpublikation
R. Comin, A. Frano, M. M. Yee, Y. Yoshida, H. Eisaki, E. Schierle, E. Weschke, R. Sutarto, F. He, A. Soumyanarayanan, Y. He, M. Le Tacon, I.S. Elfimov, J. E. Hoffman, G.A. Sawatzky, B. Keimer und A. Damascelli

Charge order driven by Fermi-arc instability in Bi2Sr2−xLaxCuO6+δ

Science express, 19. Dezember 2013

Eduardo H. da Silva Neto, Pegor Aynajian, Alex Frano, Riccardo Comin, Enrico Schierle, Eugen Weschke, András Gyenis, Jinsheng Wen, John Schneeloch, Zhijun Xu, Shimpei Ono, Genda Gu, Mathieu Le Tacon und Ali Yazdani

Ubiquitous Interplay between Charge Ordering and High-Temperature Superconductivity in Cuprates

Science express, 19. Dezember 2013

Prof. Dr. Bernhard Keimer | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7677733/hochtemperatur_supraleitung_kuprat_ladungsdichtewelle

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Freie Elektronen in Sonnen-Protuberanzen untersucht
25.07.2017 | Georg-August-Universität Göttingen

nachricht Magnetische Quantenobjekte im "Nano-Eierkarton": PhysikerInnen bauen künstliche Fallen für Fluxonen
25.07.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungsnachrichten

Grossmäuliger Fisch war nach Massenaussterben Spitzenräuber

26.07.2017 | Geowissenschaften

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung