Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wetterbericht aus dem Asteroidengürtel

22.10.2013
Mineralogen der Universität Jena analysieren Staubpartikel des Asteroiden „25143 Itokawa“

Extreme Niederschläge wie Starkregen oder Hagel gehören zu den eher unangenehmen Seiten des irdischen Wetters. Doch solche Ereignisse sind rein gar nichts im Vergleich zu den „Wetter“-Einflüssen, denen Himmelskörper unseres Sonnensystems, ohne den Schutz durch eine Atmosphäre, ausgesetzt sind. So hagelt es im All nicht nur von Gesteinsbrocken bis zur Größe von Hochhäusern. Auch energiereiche kosmische Strahlung sowie Teilchenstrahlung der Sonne prasseln unaufhörlich auf sie nieder.


In diesem fest verschraubten Metallzylinder sind vor einem Jahr zwei mikroskopisch kleine Staubkörnchen vom Asteroiden „25143 Itokawa“ am Institut für Geowissenschaften der Universität Jena angeliefert worden. Bei ihrer Analyse ist es dem Forscherteam um Prof. Dr. Falko Langenhorst gelungen, die Spuren von Partikel-Einschlägen auf der Oberfläche des Asteroiden nachzuweisen.

Foto: Jan-Peter Kasper/FSU

Diese – eher verniedlichend – als „Weltraum-Wetter“ bezeichneten Einflüsse konnten jetzt in einem Labor auf der Erde untersucht werden: An Staubpartikeln des Asteroiden „25143 Itokawa“ ist es einem Forscherteam um Prof. Dr. Falko Langenhorst von der Friedrich-Schiller-Universität Jena gelungen, die Spuren von Partikel-Einschlägen auf der Oberfläche des Asteroiden nachzuweisen. Diese Ergebnisse hat der Mineraloge gerade während der Tagung „HAYABUSA 2013: Symposium of Solar System Materials“ im japanischen Sagamihara vorgestellt.

Zu dieser Tagung hatte die japanische Weltraumagentur JAXA diejenigen Wissenschaftler eingeladen, die Probenmaterial der japanischen Mission „Hayabusa“ untersucht haben. Die Raumsonde „Hayabusa“ war 2005 auf dem Asteroiden Itokawa gelandet, hatte Bodenproben genommen und sie über eine Distanz von mehr als 40 Millionen Kilometer zur Erde transportiert. Weltweit hat die JAXA nur acht renommierten Forschern außerhalb Japans Material für eigene Untersuchungen zur Verfügung gestellt – einer davon ist der Jenaer Mineraloge Langenhorst.

Die chemische Zusammensetzung und Kristallbaufehler der Asteroidenminerale analysiert

Ziel seiner Untersuchungen war jedoch nicht das Verfassen eines „Weltraum-Wetterberichts“: „Uns interessierten in erster Linie die chemische Zusammensetzung und Kristallbaufehler der Asteroidenminerale, denn diese ermöglichen es, Rückschlüsse auf die Urprozesse unseres Sonnensystems zu ziehen“, erläutert Langenhorst. So lassen sich anhand der Mineralzusammensetzung der Staubkörnchen nicht nur Aussagen über die Entstehung des Asteroiden und seiner Geschichte treffen.

Sie gibt darüber hinaus auch Auskunft über die „Kinderstube“ des gesamten Sonnensystems. Denn: Im Asteroidengürtel zwischen Mars und Jupiter, wo auch Itokawa seine Bahn zieht, ist die Zeit seit der Entstehung der Planeten praktisch stehen geblieben. Seit sich vor etwa 4,5 Milliarden Jahren die Asteroiden im Sonnennebel durch Zusammenballung von Staubpartikeln gebildet haben, sind sie nahezu unverändert geblieben. Anders die Erde: sie hat sich durch Prozesse wie Kern-Mantel-Trennung, Verwitterung und Plattentektonik kontinuierlich verändert, so dass die ursprünglichen Gesteinsinformationen über die Frühgeschichte „überschrieben“ wurden – wie Daten auf einer formatierten Computerfestplatte. „Nur durch Proben von Asteroiden und Kometen können wir heute noch direkte Einblicke in die frühe Entstehungsgeschichte des Sonnensystems erhalten“, so Langenhorst.

Die chemische und strukturelle Analyse der Asteroidenpartikel bestätigte die urtümliche Zusammensetzung von Itokawa. Die Staubpartikel bestehen zum überwiegenden Teil aus Silikatmineralen wie Olivin und Pyroxen. Weitere Bestandteile sind Eisen-Nickel-Verbindungen und Eisensulfide. Auch konnten die Spuren der „Weltraum-Bewitterung“ anhand der Strukturveränderungen der Minerale eindeutig nachgewiesen werden.

Für ihre Untersuchungen nutzte das Jenaer Team eine äußert filigrane Arbeitstechnik: Aus den nur 40 mal 50 Mikrometer (Tausendstel Millimeter) kleinen Partikeln haben Langenhorst und seine Mitarbeiter mit Hilfe einer Ionenfeinstrahlanlage (FIB) an einem Rasterelektronenmikroskop zunächst hauchdünne Scheiben herausgefräst: jede wenige Nanometer dick. Diese konnten anschließend mit einem Transmissionselektronenmikroskop (TEM) untersucht werden, das eine Durchleuchtung von Probenmaterial mit Elektronen erlaubt.

Diese Technik können die Mineralogen zukünftig verstärkt in Jena nutzen: Gerade ist am Lehrstuhl von Prof. Langenhorst ein Hochleistungs-TEM in Betrieb genommen worden. Das rund 1,5 Mio. Euro teure Gerät ist aus Mitteln des Leibniz-Forschungspreises finanziert worden, mit dem der Jenaer Wissenschaftler im Jahr 2007 ausgezeichnet worden war.

Kontakt:
Prof. Dr. Falko Langenhorst
Analytische Mineralogie der Mikro- und Nanostrukturen
Institut für Geowissenschaften der Friedrich-Schiller-Universität Jena
Carl-Zeiss-Promenade 10, 07745 Jena
Tel.: 03641 / 948730, 03641 / 948710 (Sekr.)
E-Mail: Falko.Langenhorst[at]uni-jena.de

Ute Schönfelder | idw
Weitere Informationen:
http://www.uni-jena.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Sterngeburt in den Winden supermassereicher Schwarzer Löcher
28.03.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Das anwachsende Ende der Ordnung
27.03.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit

Antibiotikaresistenz zeigt sich durch Leuchten

28.03.2017 | Biowissenschaften Chemie