Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wesentliche Quantencomputer-Komponente um zwei Größenordnungen verkleinert

14.11.2017

Forscher am IST Austria haben kompakte nichtmagnetische Photonenrouter entwickelt. Die mikrometergroßen Bauelemente leiten Mikrowellenphotonen unidirektional und können Qubits vor schädlichem Rauschen schützen.

Quantenbits, auch Qubits genannt, sind die Schlüsselbausteine zukünftiger Quantencomputer. Um eine Berechnung durchzuführen, müssen Signale zu und von den Qubits weg geleitet werden. Gleichzeitig sind Qubits aber extrem empfindlich gegenüber Störungen aus ihrer Umgebung und müssen von unerwünschten Signalen, insbesondere von Magnetfeldern, abgeschirmt werden.


Der neue nichtreziproke Bauteil wirkt wie eine Kreisverkehr für Photonen. Hier zeigen Pfeile die Ausbreitungsrichtung verschiedener Photonen.

IST Austria/Birgit Rieger

Es ist daher ein Problem, dass diejenigen Bauteile, die Qubits vor unerwünschten Signalen schützen sollten, sogenannte nichtreziproke Bauelemente wie Isolatoren oder Zirkulatoren, selbst Magnetfelder erzeugten. Darüber hinaus sind kommerzielle Zirkulatoren mehrere Zentimeter groß, was problematisch ist, da ein Quantenprozessor eine große Anzahl solcher Elemente benötigt.

Jetzt haben Wissenschaftler des Institute of Science and Technology Austria (IST Austria) in Klosterneuburg gleichzeitig mit konkurrierenden Gruppen in der Schweiz und den Vereinigten Staaten die Größe dieser Bauteile um etwa zwei Größenordnungen verringert.

Ihre Vorrichtung, deren Funktion sie mit der eines Kreisverkehrs für Photonen vergleichen, ist nur etwa ein Zehntel Millimeter groß und – was vielleicht noch wichtiger ist – sie ist nichtmagnetisch. Ihre Studie wurde in der Open-Access-Zeitschrift Nature Communications veröffentlicht.

Wenn Forscher ein Signal, zum Beispiel ein Mikrowellenphoton, von einem Qubit empfangen wollen, aber gleichzeitig verhindern wollen, dass Rauschen und andere Störsignale denselben Weg zurück zum Qubit nehmen, verwenden sie nichtreziproke Bauteile wie Isolatoren oder Zirkulatoren. Diese Geräte steuern den Signalverkehr, ähnlich wie der Straßenverkehr im Alltag geregelt wird.

Aber im Fall eines Quantencomputers sind es nicht Autos, die den Verkehr verursachen, sondern Photonen in Übertragungsleitungen. "Stellen Sie sich einen Kreisverkehr vor, in dem Sie nur gegen den Uhrzeigersinn fahren können", erklärt Erstautor Dr. Shabir Barzanjeh, Postdoc in der Gruppe von Professor Johannes Fink am IST Austria.

"An der ersten Ausfahrt, ganz unten, befindet sich unser Qubit. Sein schwaches Signal kann zur zweiten Ausfahrt ganz oben gelangen. Aber ein Signal, das von dieser zweiten Ausfahrt kommt, kann nicht denselben Weg zurück zum Qubit nehmen. Es wird gezwungen, entgegen dem Uhrzeigersinn zu fahren, und bevor es Ausgang 1 erreichen kann, trifft es auf Ausgang 3. Dort blockieren wir es und verhindern, dass es das Qubit beschädigt."

Die von der Gruppe entwickelten Zirkulatoren bestehen aus integrierten Aluminiumschaltkreisen auf Siliziumchips. Erstmals wurden dabei mikromechanischen Oszillatoren verwendet: zwei kleine Siliziumbalken, die auf dem Chip wie Gitarrensaiten schwingen und mit dem Schaltkreis interagieren. Diese Bauteile sind winzig: nur etwa einen Zehntel Millimeter im Durchmesser, was einen der Hauptvorteile des neuen Geräts gegenüber seinen traditionellen Vorgängern darstellt, die einige Zentimeter breit waren.

Die Prinzipien von Quantencomputern werden derzeit nur an einigen wenigen Qubits getestet, aber in Zukunft werden Tausende oder sogar Millionen von Qubits miteinander verbunden sein, und viele dieser Qubits benötigen ihren eigenen Zirkulator. "Stellen Sie sich vor, Sie bauen einen Prozessor mit Millionen solcher zentimetergroßen Komponenten. Er wäre enorm groß und unpraktisch", sagt Shabir Barzanjeh.

"Unsere nichtmagnetischen und sehr kompakten Mikrochipzirkulatoren zu verwenden macht das Leben viel einfacher." Bis es zu dieser konkreten Anwendung der neuen Bauteile kommt, sind aber noch einige Hürden zu nehmen. So ist die verfügbare Signalbandbreite derzeit noch recht klein und die relativ hohen erforderlichen Eingangsleistungen könnten den Qubits schaden. Die Forscher sind aber zuversichtlich, dass sich diese Probleme als durchaus lösbar erweisen werden.

Professor Johannes Fink ist seit Anfang 2016 am IST Austria tätig. Er und seine Gruppe untersuchen Quantenphysik in elektrischen, mechanischen und optischen Mikrochip-basierten Bauteilen mit dem Hauptziel, die Quantentechnologie voranzutreiben und zu integrieren. Anfang dieses Jahres erhielt er einen renommierten ERC Starting Grant für sein Projekt zur Entwicklung eines Glasfaser-Transceivers für supraleitende Qubits, sowie einen Grant der Schweizer NOMIS-Stiftung.

Dr. Shabir Barzanjeh wurde mit einem Marie-Skłodowsa-Curie-Stipendium ausgezeichnet, um am IST Austria zu arbeiten. Seine Hauptinteressen liegen in der Schaltkreisquantenelektrodynamik und der Optomechanik. Vom 12. bis zum 14. Februar 2018 veranstalten Johannes Fink und Shabir Barzanjeh die internationale Konferenz „Frontiers of Circuit QED and Optomechanics“ (FCQO 2018) in Klosterneuburg, um weltweit führenden Forscher auf dem Gebiet zusammen zu bringen. Eine Anmeldung ist bereits möglich: https://ist.ac.at/fcqo18

IST Austria
Das Institute of Science and Technology (IST Austria) in Klosterneuburg ist ein Forschungsinstitut mit eigenem Promotionsrecht. Das 2009 eröffnete Institut widmet sich der Grundlagenforschung in den Naturwissenschaften, Mathematik und Computerwissenschaften. Das Institut beschäftigt ProfessorInnen nach einem Tenure-Track-Modell und Post-DoktorandInnen sowie PhD StudentInnen in einer internationalen Graduate School. Neben dem Bekenntnis zum Prinzip der Grundlagenforschung, die rein durch wissenschaftliche Neugier getrieben wird, hält das Institut die Rechte an allen resultierenden Entdeckungen und fördert deren Verwertung. Der erste Präsident ist Thomas Henzinger, ein renommierter Computerwissenschaftler und vormals Professor an der University of California in Berkeley, USA, und der EPFL in Lausanne, Schweiz. http://www.ist.ac.at

Originalartikel:
„Mechanical on-chip microwave circulator”, Barzanjeh et al. 2017
https://www.nature.com/articles/s41467-017-01304-x

Weitere Informationen:

https://www.nature.com/articles/s41467-017-01304-x Originalartikel: Barzanjeh et al. 2017
https://ist.ac.at/fcqo18 Konferenz „Frontiers of Circuit QED and Optomechanics“ (FCQO 2018)
https://quantumids.com/ Webseite der Forschungsgruppe um Professor Johannes Fink

Dr. Elisabeth Guggenberger | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Grundlagenforschung Optomechanics Photonen QED Qubit

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Blick ins Universum
15.01.2018 | Georg-August-Universität Göttingen

nachricht Extrem helle und schnelle Lichtemission
11.01.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Wie Metallstrukturen effektiv helfen, Knochen zu heilen

Forscher schaffen neue Generation von Knochenimplantaten

Wissenschaftler am Julius Wolff Institut, dem Berlin-Brandenburger Centrum für Regenerative Therapien und dem Centrum für Muskuloskeletale Chirurgie der...

Im Focus: Extrem helle und schnelle Lichtemission

Eine in den vergangenen Jahren intensiv untersuchte Art von Quantenpunkten kann Licht in allen Farben wiedergeben und ist sehr hell. Ein internationales Forscherteam mit Beteiligung von Wissenschaftlern der ETH Zürich hat nun herausgefunden, warum dem so ist. Die Quantenpunkte könnten dereinst in Leuchtdioden zum Einsatz kommen.

Ein internationales Team von Wissenschaftlern der ETH Zürich, von IBM Research Zurich, der Empa und von vier amerikanischen Forschungseinrichtungen hat die...

Im Focus: Paradigmenwechsel in Paris: Den Blick für den gesamten Laserprozess öffnen

Die neusten Trends und Innovationen bei der Laserbearbeitung von Composites hat das Fraunhofer-Institut für Lasertechnik ILT im März 2018 auf der JEC World Composite Show im Fokus: In Paris demonstrieren die Forscher auf dem Gemeinschaftsstand des Aachener Zentrums für integrativen Leichtbau AZL unter anderem, wie sich Verbundwerkstoffe mit dem Laser fügen, strukturieren, schneiden und bohren lassen.

Keine andere Branche hat in der Öffentlichkeit für so viel Aufmerksamkeit für Verbundwerkstoffe gesorgt wie die Automobilindustrie, die neben der Luft- und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung „Elektronikkühlung - Wärmemanagement“ vom 06. - 07.03.2018 in Essen

11.01.2018 | Veranstaltungen

Registrierung offen für Open Science Conference 2018 in Berlin

11.01.2018 | Veranstaltungen

Wie sieht die Bioökonomie der Zukunft aus?

10.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit mikroskopischen Luftblasen dämmen

15.01.2018 | Architektur Bauwesen

Feldarbeiten der größten Bodeninventur Deutschlands sind abgeschlossen

15.01.2018 | Agrar- Forstwissenschaften

Perowskit-Solarzellen: Es muss gar nicht perfekt sein

15.01.2018 | Materialwissenschaften