Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Spinwellen auf Licht reagieren

19.05.2015

Physiker der Technischen Universität Kaiserslautern haben ein wichtiges Verfahren für die Computer der Zukunft vorgestellt. Einem Team um die Professoren Burkard Hillebrands und Georg von Freymann ist es erstmals gelungen, die magnetischen Eigenschaften eines Bauelements optisch zu steuern. Die Ergebnisse wurden im Fachjournal Nature Physics veröffentlicht.

Trotz aller technischen Entwicklungsfortschritte werden irgendwann die heutigen Computer an ihre Grenzen stoßen, was Größe und Schnelligkeit betrifft. Ihre Bauelemente lassen sich bald nicht mehr weiter verkleinern, ihr Energieverbrauch und damit ihre Erwärmung wird zu hoch.


Schematischer Aufbau des optisch steuerbaren Spintronik-Bauelements.

Dennoch steigen auch in Zukunft die Ansprüche der Nutzer an die elektronische Datenverarbeitung immer weiter: Informationen sollen noch schneller verschickt und auf noch engerem Raum gespeichert werden, und die Technik dazu soll möglichst wenig Energie benötigen.

Um diese Probleme zu lösen, wird man in künftigen Computern nicht mehr wie heute ausschließlich Elektronen verwenden, die hin- und her fließen, um damit zu rechnen und Daten zu speichern, sondern auch nicht-materielle Phänomene, etwa optische oder magnetische Erscheinungen, einbeziehen. In den Labors der Grundlagenforscher, etwa am Landesforschungszentrum OPTIMAS in Kaiserslautern, wird bereits heute intensiv daran gearbeitet, die Bauelemente dafür zu entwickeln.

Spinwellen als Grundlage der Datenverarbeitung

„Im Fokus unserer Forschung stehen Spinwellen und Magnonen“, sagt Burkard Hillebrands, Professor an der Technischen Universität Kaiserslautern und gleichzeitig Mitglied bei OPTIMAS. „Dabei handelt es sich um magnetische Phänomene, die durch den Spin, also den Eigendrehimpuls der Elektronen, verursacht werden. Mit ihnen beschäftigt sich ein junges Forschungsgebiet, die Magnon-Spintronik.“

Das rasch wachsende Gebiet befasst sich mit der Erzeugung, Manipulation und Messung von Spinwellen und Magnonen. Bei Spinwellen handelt es sich um eine Auslenkung des Spins einzelner Teilchen in einem magnetischen Ordnungszustand, die sich ähnlich wie Schallwellen durch den Festkörper fortpflanzt. Wie bei allen Wellen kann man auch den Spinwellen formal ein Quantenteilchen zuordnen. Hier wird es Magnon genannt.

Ein großer Erfolg gelang nun einem Wissenschaftlerteam rund um die Professoren Burkard Hillebrands und Georg von Freymann des Fachbereichs Physik der TU Kaiserslautern. Sie konnten erstmals magnetische Strukturen eines magnonischen Kristalls* durch den Einsatz von Licht verändern. Bisher wurden diese fest in das Material eingeätzt und lagen damit ein für alle Mal fest. Mit der neuen Technik können sie aber je nach Bedarf durch Bestrahlen mit Laserlicht geändert werden. Da die Strukturen nach Beendigung der Laserbestrahlung wieder vollständig verschwinden, öffnet das Verfahren den Weg für schaltbare Leitungen, flexible Filter oder auch logische Gatter.

Lasererzeugte Hologramme auf Granat

Für ihren magnonischen Kristall benutzten die Forscher eine dünne Schicht aus Yttrium-Eisen-Granat** auf einem Substrat aus Gadolinium-Gallium-Granat. Sie bestrahlten diese mit streifenförmigen Hologrammen, welche sie mit Laserlicht erzeugten. „An den bestrahlten Stellen erwärmt sich das Material und verändert blitzschnell die magnetische Landschaft in der Schicht“, erklärt der Optikspezialist Professor Georg von Freymann. „Auf diese Weise könnte man später in dem Bauelement eines Computers die Spinwellen manipulieren. Der große Vorteil dabei ist, dass wir so beliebige Strukturen erzeugen können, zwischen denen man umschalten kann.“

Die magnonen-basierte Datenverarbeitung hätte große Vorteile: Sie erzeugt keine Wärme, und es sind wesentlich weniger Bauelemente pro Rechenoperation nötig als beim herkömmlichen Rechnen mit Elektronen in Halbleitern. Sie lässt sich zudem kombinieren mit elektronischen Teilen des Computers; für diesen Übergang zwischen Elektronik und Magnonik und zurück entwickeln die Forscher gerade die nötigen Bauelemente.

Das neue Verfahren stellt einen wichtigen Entwicklungsschritt zu den bereits vorgestellten magnonischen Transistoren dar. Auf der CeBIT 2015 hatten die Kaiserslauterner Forscher kürzlich dieses zentrale Bauelement präsentiert. Ihr nächstes Ziel ist es, weitere Bauelemente für die Datenverarbeitung zu entwickeln und sie zu miniaturisieren. Denn „so wie einst der erste elektronische Transistor noch zentimetergroß war und heute nur noch Nanometer einnimmt, werden auch magnonische Bauelemente immer kleiner werden“, prophezeit Hillebrands.

Weitere Informationen

*Magnonische Kristalle sind Wellenleiterstrukturen, die eine periodische Variation ihrer Materialeigenschaften aufweisen. Sie gehören zur Klasse der sogenannten Metamaterialien: künstliche Materialien mit Eigenschaften, die von einer gezielt entworfenen Struktur erzeugt werden. Solche Kristalle können beispielsweise Magnonen einfangen, Spinwellen an der Ausbreitung in bestimmte Richtungen hindern oder sie in vorgegebene Richtungen lenken.
**Granat ist eine besondere Kristallform, die für magnetische Zwecke gut geeignet ist und auch als Schmuckstein vorkommt. An ihren Gitterplätzen können unterschiedliche Atome sitzen.

Original-Publikation:
Marc Vogel, Andrii V. Chumak, Erik H. Waller, Thomas Langner, Vitaliy I. Vasyuchka, Burkard Hillebrands, Georg von Freymann (2015) Optically-Reconfigurable Magnetic Materials, Nature Phys., 2015, online publication doi: 10.1038/nphys3325

Landesforschungszentrum OPTIMAS

Das Landesforschungszentrum OPTIMAS verbindet Optik und Materialwissenschaften unter dem übergeordneten Forschungsthema Spin - Licht - Materie. Als eines von zwei Forschungszentren der TU Kaiserslautern wurde OPTIMAS 2008 im Rahmen der Forschungsinitiative des Landes eingerichtet. http://optimas.uni-kl.de/home/

Ansprechpartner für die Medien

Dr. Isabel Sattler
Landesforschungszentrum OPTIMAS
Geschäftsstelle
Technische Universität Kaiserslautern
Erwin-Schrödinger-Str. 46/360
D-67663 Kaiserslautern
Fon ++49/(0)631-205-2273
Fax ++49/(0)631-205-3903
isattler@rhrk.uni-kl.de

Fachliche Ansprechpartner
Prof. Dr. Burkard Hillebrands
Fachbereich Physik
Technische Universität Kaiserslautern
+49 631 205-4228
hilleb@physik.uni-kl.de
http://www.physik.uni-kl.de/hillebrands

Prof. Dr. Georg von Freymann
Fachbereich Physik
Technische Universität Kaiserslautern
+49 631 205-5225
georg.freymann@physik.uni-kl.de
http://www.physik.uni-kl.de/freymann

Weitere Informationen:

http://www.physik.uni-kl.de/hillebrands
http://www.physik.uni-kl.de/freymann

Thomas Jung | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Drei Generationen an Sternen unter einem Dach
27.07.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Physiker designen ultrascharfe Pulse
27.07.2017 | Universität Innsbruck

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Basis für neue medikamentöse Therapie bei Demenz

27.07.2017 | Biowissenschaften Chemie

Aus Potenzial Erfolge machen: 30 Rittaler schließen Nachqualifizierung erfolgreich ab

27.07.2017 | Unternehmensmeldung

Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse

27.07.2017 | Biowissenschaften Chemie