Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn das Licht im Verkehrsstau steckt

24.03.2014

Dass wir durch ein Glas Milch nicht hindurchsehen können, liegt an der Lichtstreuung. Sie ist meist schwer zu berechnen, doch im Falle von besonders starker Streuung plötzlich verblüffend einfach, wie man an der TU Wien nun nachweisen konnte.

Warum ist Milch weiß und für uns undurchsichtig?


Aluminiumkugeln, in Styropor verpackt: So wird Wellenstreuung im Labor gemessen.

University of Texas at San Antonio


Komplizierte Wege: Die Licht-Zustände, die durch das Medium gelangen.

TU Wien

Lichtwellen werden in Substanzen wie Milch zwischen unzähligen Tröpfchen immer wieder hin und her gestreut. Solche Wellen-Ausbreitungs-Phänomene spielen auch in der Technik eine sehr wichtige Rolle, zum Beispiel in der medizinischen Diagnostik.

Mit aufwändigen Computersimulationen und Mikrowellen-Experimenten gelangte man nun zu einem überraschenden Ergebnis: Wenn man Wellen durch immer komplexere Strukturen schickt, benehmen sie sich irgendwann ganz einfach und folgen einem einzigen, ganz bestimmten Streumuster. Die Ergebnisse wurden nun im Fachjournal „Nature Communications“ veröffentlicht.

Viele Wege führen durch die Stadt

Wie lange dauert es, von einem Ende einer Stadt zum anderen zu gelangen? Diese Frage hat keine eindeutige Antwort, denn das hängt vom Weg ab, den man wählt. Manche Verkehrsteilnehmer sind besonders schnell, manche quälen sich durch einen Verkehrsstau, wieder andere verirren sich und kommen gar nicht ans Ziel.

„Mit Licht ist das so ähnlich“, erklärt Prof. Stefan Rotter vom Institut für Theoretische Physik der TU Wien. „Schickt man es durch ein kompliziertes, inhomogenes Material, dann kann es auf viele verschiedene Arten hindurchgelangen und im Medium viele verschiedene Streumuster einnehmen.“

Je größer die Stadt und je stärker der Verkehr, umso schwieriger wird es, einen Weg hindurch zu finden. Je dicker ein Material und je stärker die Lichtstreuung, umso geringer ist seine optische Durchlässigkeit. Das verblüffende Ergebnis der nun vorgelegten Arbeit zeigt sich, wenn man Wellen durch ein sehr dickes, rein zufällig strukturiertes Medium schickt, in dem die Wellen sehr stark gestreut werden:

In diesem Fall gibt es nur noch eine einzige Variante, um durch das Medium zu gelangen. Anstatt das komplizierte Gesamtsystem mit seinen unzähligen inneren Wellenzuständen zu beschreiben, lässt es sich dann mit einem einzigen Streumuster vollständig charakterisieren. „Das ist als ob man zur Zeit des morgendlichen Verkehrsstaus eine riesige Stadt nur mehr auf einem einzigen Weg durchqueren kann“, so Rotter.

Mit modernen Computern alten Rätseln auf der Spur

Die theoretischen Überlegungen darüber gehen zurück bis in die Fünfzigerjahre, als der Physiker Philip W. Anderson solche Phänomene theoretisch untersuchte und 1977 dafür den Nobelpreis erhielt. Seine Theorie der Wellenausbreitung kann Lichtwellen genauso erklären wie Schall, und auch in der Quantenphysik, in der Teilchen als Welle beschrieben werden, treffen dieselben Überlegungen zu.

Lange Zeit war es aber nicht möglich, die hochkomplizierte Ausbreitung von Wellen in ungeordneten Medien adäquat zu berechnen. Doch mittlerweile kann man mit Hilfe von Großcomputern und klugen Berechnungsmethoden solchen Phänomenen mit großer Präzision auf die Spur kommen. Adrian Girschik, Florian Libisch und Stefan Rotter von der TU Wien entwickelten Computersimulationen, an der University of Texas in San Antonio wurden Experimente durchgeführt: Aluminiumkugeln wurden in Styropor gepackt, in eine Röhre gefüllt und dann mit Mikrowellen bestrahlt. Die Alukugeln bilden dadurch zufällig angeordnete Streu-Hindernisse für die Mikrowellenstrahlung, ähnlich wie Öltröpfchen in der Milch das sichtbare Licht ablenken.

Wie kompliziert die Wellenausbreitung ist, hängt von der Beschaffenheit des Mediums ab: „Man könnte erwarten, dass das System immer komplizierter wird, je länger die Röhre ist, und je mehr Aluminiumkugeln die Mikrowellen ablenken“, sagt Stefan Rotter. „Doch in Wirklichkeit zeigt sich: Ab einer gewissen Länge, ab einer gewissen Komplexität des Streusystems, spielt nur noch ein einziger Übertragungskanal eine Rolle.“ Am Ende der Röhre kommt dann immer dasselbe Wellenmuster heraus – nur ein einziger Wellen-Zustand gelangt durch das System, alle anderen werden bis zur Unsichtbarkeit abgedämpft.

Gemeinsam publizierten nun die Forschungsteams der TU Wien und der University of Texas ihre Ergebnisse im Fachjournal „Nature Communications“. Dass Untersuchungen von Wellenausbreitung durch ungeordnete Materialien auf so großes Interesse stoßen, ist kein Zufall: Solche Wellenphänomene sind in Wissenschaft und Technik allgegenwärtig. In der medizinischen Diagnostik, in der Geophysik, bei der Erzeugung von Laserstrahlung mit speziellen Zufallslasern – in vielen ganz unterschiedlichen Bereichen hat man es mit Wellenausbreitung zu tun, die von der Umgebung stark gestört wird. Diese Phänomene immer besser zu verstehen ist daher eine Aufgabe, die für viele verschiedene Bereiche relevant ist.

Rückfragehinweis:
Prof. Stefan Rotter
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13618
stefan.rotter@tuwien.ac.at

Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
T: +43-1-58801-41027
florian.aigner@tuwien.ac.at

Weitere Informationen:

http://staging-www.nature.com/ncomms/2014/140321/ncomms4488/full/ncomms4488.html Originalpublikation

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Auf dem Weg zur optischen Kernuhr
19.04.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Laser erzeugt Magnet – und radiert ihn wieder aus
18.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics