Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn das Licht im Verkehrsstau steckt

24.03.2014

Dass wir durch ein Glas Milch nicht hindurchsehen können, liegt an der Lichtstreuung. Sie ist meist schwer zu berechnen, doch im Falle von besonders starker Streuung plötzlich verblüffend einfach, wie man an der TU Wien nun nachweisen konnte.

Warum ist Milch weiß und für uns undurchsichtig?


Aluminiumkugeln, in Styropor verpackt: So wird Wellenstreuung im Labor gemessen.

University of Texas at San Antonio


Komplizierte Wege: Die Licht-Zustände, die durch das Medium gelangen.

TU Wien

Lichtwellen werden in Substanzen wie Milch zwischen unzähligen Tröpfchen immer wieder hin und her gestreut. Solche Wellen-Ausbreitungs-Phänomene spielen auch in der Technik eine sehr wichtige Rolle, zum Beispiel in der medizinischen Diagnostik.

Mit aufwändigen Computersimulationen und Mikrowellen-Experimenten gelangte man nun zu einem überraschenden Ergebnis: Wenn man Wellen durch immer komplexere Strukturen schickt, benehmen sie sich irgendwann ganz einfach und folgen einem einzigen, ganz bestimmten Streumuster. Die Ergebnisse wurden nun im Fachjournal „Nature Communications“ veröffentlicht.

Viele Wege führen durch die Stadt

Wie lange dauert es, von einem Ende einer Stadt zum anderen zu gelangen? Diese Frage hat keine eindeutige Antwort, denn das hängt vom Weg ab, den man wählt. Manche Verkehrsteilnehmer sind besonders schnell, manche quälen sich durch einen Verkehrsstau, wieder andere verirren sich und kommen gar nicht ans Ziel.

„Mit Licht ist das so ähnlich“, erklärt Prof. Stefan Rotter vom Institut für Theoretische Physik der TU Wien. „Schickt man es durch ein kompliziertes, inhomogenes Material, dann kann es auf viele verschiedene Arten hindurchgelangen und im Medium viele verschiedene Streumuster einnehmen.“

Je größer die Stadt und je stärker der Verkehr, umso schwieriger wird es, einen Weg hindurch zu finden. Je dicker ein Material und je stärker die Lichtstreuung, umso geringer ist seine optische Durchlässigkeit. Das verblüffende Ergebnis der nun vorgelegten Arbeit zeigt sich, wenn man Wellen durch ein sehr dickes, rein zufällig strukturiertes Medium schickt, in dem die Wellen sehr stark gestreut werden:

In diesem Fall gibt es nur noch eine einzige Variante, um durch das Medium zu gelangen. Anstatt das komplizierte Gesamtsystem mit seinen unzähligen inneren Wellenzuständen zu beschreiben, lässt es sich dann mit einem einzigen Streumuster vollständig charakterisieren. „Das ist als ob man zur Zeit des morgendlichen Verkehrsstaus eine riesige Stadt nur mehr auf einem einzigen Weg durchqueren kann“, so Rotter.

Mit modernen Computern alten Rätseln auf der Spur

Die theoretischen Überlegungen darüber gehen zurück bis in die Fünfzigerjahre, als der Physiker Philip W. Anderson solche Phänomene theoretisch untersuchte und 1977 dafür den Nobelpreis erhielt. Seine Theorie der Wellenausbreitung kann Lichtwellen genauso erklären wie Schall, und auch in der Quantenphysik, in der Teilchen als Welle beschrieben werden, treffen dieselben Überlegungen zu.

Lange Zeit war es aber nicht möglich, die hochkomplizierte Ausbreitung von Wellen in ungeordneten Medien adäquat zu berechnen. Doch mittlerweile kann man mit Hilfe von Großcomputern und klugen Berechnungsmethoden solchen Phänomenen mit großer Präzision auf die Spur kommen. Adrian Girschik, Florian Libisch und Stefan Rotter von der TU Wien entwickelten Computersimulationen, an der University of Texas in San Antonio wurden Experimente durchgeführt: Aluminiumkugeln wurden in Styropor gepackt, in eine Röhre gefüllt und dann mit Mikrowellen bestrahlt. Die Alukugeln bilden dadurch zufällig angeordnete Streu-Hindernisse für die Mikrowellenstrahlung, ähnlich wie Öltröpfchen in der Milch das sichtbare Licht ablenken.

Wie kompliziert die Wellenausbreitung ist, hängt von der Beschaffenheit des Mediums ab: „Man könnte erwarten, dass das System immer komplizierter wird, je länger die Röhre ist, und je mehr Aluminiumkugeln die Mikrowellen ablenken“, sagt Stefan Rotter. „Doch in Wirklichkeit zeigt sich: Ab einer gewissen Länge, ab einer gewissen Komplexität des Streusystems, spielt nur noch ein einziger Übertragungskanal eine Rolle.“ Am Ende der Röhre kommt dann immer dasselbe Wellenmuster heraus – nur ein einziger Wellen-Zustand gelangt durch das System, alle anderen werden bis zur Unsichtbarkeit abgedämpft.

Gemeinsam publizierten nun die Forschungsteams der TU Wien und der University of Texas ihre Ergebnisse im Fachjournal „Nature Communications“. Dass Untersuchungen von Wellenausbreitung durch ungeordnete Materialien auf so großes Interesse stoßen, ist kein Zufall: Solche Wellenphänomene sind in Wissenschaft und Technik allgegenwärtig. In der medizinischen Diagnostik, in der Geophysik, bei der Erzeugung von Laserstrahlung mit speziellen Zufallslasern – in vielen ganz unterschiedlichen Bereichen hat man es mit Wellenausbreitung zu tun, die von der Umgebung stark gestört wird. Diese Phänomene immer besser zu verstehen ist daher eine Aufgabe, die für viele verschiedene Bereiche relevant ist.

Rückfragehinweis:
Prof. Stefan Rotter
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13618
stefan.rotter@tuwien.ac.at

Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
T: +43-1-58801-41027
florian.aigner@tuwien.ac.at

Weitere Informationen:

http://staging-www.nature.com/ncomms/2014/140321/ncomms4488/full/ncomms4488.html Originalpublikation

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

nachricht Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
20.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie