Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weltweit größtes Radioteleskop wird ausgebaut

07.04.2014

Universitäten Bielefeld und Hamburg arbeiten mit dem Niederländischen Institut für Radioastronomie zusammen / Mittwoch Vertragsunterzeichnung

Die Universitäten Bielefeld und Hamburg errichten zusammen mit dem niederländischen Radioastronomie-Institut ASTRON ein Teleskop in der Größe eines Fußballplatzes. Die Beobachtungsstation wird in Norderstedt (Schleswig-Holstein) installiert.


Die Station, an der die Universität Bielefeld beteiligt ist, wird das sechste Antennenfeld des LOFAR-Teleskops in Deutschland. Das Bild zeigt die Station bei Unterweilenbach in Bayern.

Foto: Rainer Hassfurter/MPA


Der Kosmologe Professor Dr. Dominik Schwarz von der Universität Bielefeld ist einer der Planer des neuen Radioteleskops in Norderstedt.

Foto: Universität Bielefeld

Sie wird mit dem weltweit größten Radioteleskop, dem internationalen LOFAR-Teleskop, verbunden. Als Zusammenschluss von damit künftig 49 Stationen kann LOFAR scharfe Bilder von extrem weit entfernten Galaxien produzieren.

Die Projektpartner für die Station in Norder-stedt kommen am Mittwoch, 9. April, auf der Hannover Messe 2014 zusammen und unterzeichnen den Vertrag über die Errichtung der neuen Anlage.

Das Antennenfeld in Norderstedt wird die sechste LOFAR-Station in Deutschland. Das Projekt wird vom Bundesministerium für Bildung und Forschung sowie den Ländern Hamburg und Nordrhein-Westfalen finanziert. Die Unterzeichnung des Projektvertrages ist für Mittwoch um 12 Uhr im Holland-Pavillon auf der Hannover Messe (Stand D10) vorgesehen.

„Mit LOFAR können wir Signale empfangen, die Milliarden Jahre alt sind“, erklärt Professor Dr. Dominik Schwarz. Der Physiker der Universität Bielefeld und seine Arbeitsgruppe haben die neue Station in Norderstedt mit geplant.

„Meine Arbeitsgruppe erforscht, wie sich die Galaxien im Weltall verteilen. Mit dem neuen System können wir nun auch extrem weit entfernte Galaxien berücksichtigen und erfahren so, nach welchen Regeln sich das Universum entwickelt.“ Schwarz und sein Team arbeiten mit der Arbeitsgruppe von Professor Dr. Marcus Brüggen von der Sternwarte Hamburg zusammen, die zur Universität Hamburg gehört.

Die dortigen Wissenschaftlerinnen und Wissenschaftler befassen sich damit, wie sich die Galaxien von Beginn des Universums bis heute geformt und verändert haben. Darüber hinaus soll das LOFAR-System dazu beitragen, die ersten Sterne im Universum zu entdecken, Sonneneruptionen zu studieren und magnetische Felder im Kosmos zu vermessen.

Laut Professor Schwarz haben die beiden Teams lange nach einem Standort gesucht, in dem der Empfang der Radiowellen möglichst ungestört abläuft. „Wir haben uns schließlich für Norderstedt entschieden. In dem Frequenzband, das die Antennen abtasten, ist nur wenig störender Elektrosmog zu messen.“

Die neue Station nahe Hamburg ist ein Feld mit 192 Antennen, die Signale aus dem Weltall empfangen und über ein Datenkabel zu einem Supercomputer in die Niederlande übertragen. Der Computer kombiniert die Signale mit den Daten der anderen LOFAR-Stationen und setzt sie zu einem Himmelsbild zusammen.

Mit Radioteleskopen lassen sich zum Beispiel Bilder von astronomischen Objekten wie dem Zentrum der Milchstraße oder dahinter liegenden Zwerggalaxien produzieren. Mit optischen und Infrarot-Teleskopen sind solche Aufnahmen nicht möglich, weil das Licht dieser weit entfernten astronomischen Objekte von Staub- und Nebelwolken „geschluckt“ wird. Die Radioastronomie macht sich zunutze, dass Galaxien, Sterne und Planeten Radiowellen aussenden. Diese elektromagnetischen Wellen lassen sich mit Antennen empfangen, um mit den Daten die Verteilung der Objekte in den jeweiligen Regionen des Weltalls zu berechnen.

Das LOFAR-Teleskop umfasst ein Netz von Antennenfeldern, die Radiowellen im niedrigen Frequenzbereich empfangen. Das Teleskop arbeitet in dem bisher weitgehend unerforschten Frequenzbereich zwischen etwa 10 Megahertz und 240 Megahertz. LOFAR steht deswegen für „LOw Frequency ARray“ (Niedrigfrequenz-Anordnung). In Norderstedt werden zwei Arten von Antennen installiert: Stabantennen für Frequenzen zwischen 10 und 80 Megahertz und Kachelantennen für die Frequenzen zwischen 110 und 240 Megahertz.

Außer den künftig sechs LOFAR-Stationen in Deutschland gibt es 40 Stationen in den Niederlande. Jeweils eine Station befindet sich zudem in Großbritannien, Frankreich und Schweden. Für das gesamte System werden Daten von mehr als 10.000 Antennen ausgewertet. LOFAR wurde von der niederländischen radioastronomischen Organisation ASTRON konstruiert. 17 Partner kooperieren für den Bau und den Betrieb des Systems: ASTRON, vier niederländische Universitäten sowie zwölf deutsche Hochschulen und Forschungseinrichtungen, die sich wiederum im German Long Wavelength Consortium (GLOW) zusammengeschlossen haben.

Kontakt:
Prof. Dr. Dominik Schwarz, Universität Bielefeld
Fakultät für Physik
Telefon: 0521 106- 6226
E-Mail: dschwarz@physik.uni-bielefeld.de

Weitere Informationen:

http://www.lofar.org
http://www2.physik.uni-bielefeld.de/3340.html

Jörg Heeren | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien
17.01.2018 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2018

17.01.2018 | Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Projekt "HorseVetMed": Forscher entwickeln innovatives Sensorsystem zur Tierdiagnostik

17.01.2018 | Agrar- Forstwissenschaften

Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt

17.01.2018 | Physik Astronomie

Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

17.01.2018 | Physik Astronomie