Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weltweit erster Mini-Teilchenbeschleuniger für hochbrillante Röntgenstrahlen an der TUM

29.10.2015

Seit einigen Jahren lassen sich hoch brillante Röntgenstrahlen mit ringförmigen Teilchenbeschleunigern (Synchrotronquellen) erzeugen. Diese haben aber bisher einen Durchmesser von mehreren hundert Metern und kosten einige Milliarden Euro.

An der Technischen Universität München ist heute das weltweit erste Mini-Synchrotron eingeweiht worden, mit dem hoch brillante Röntgenstrahlen auf einer Fläche von nur 5 x 3 m erzeugt werden können. Mit dem neuen Gerät sollen vor allem biomedizinische Fragestellungen zu Tumorerkrankungen, Osteoporose, Lungenerkrankungen und Arteriosklerose erforscht werden.


Die neue „Munich Compact Light Source“ (MuCLS), ein kompakter Teilchenbeschleuniger für die Erzeugung von hochbrillanten Röntgenstrahlen, wurde am 29. Oktober in Garching eröffnet. Das Gerät steht am Zentralinstitut für Medizintechnik der TUM (IMETUM).

Foto: Andreas Heddergott / TUM

Wissenschaftler und Ärzte setzen Röntgenstrahlung auch 120 Jahre nach ihrer Entdeckung standardmäßig für diagnostische Zwecke ein. Deshalb ist es ein großes Ziel, die Strahlen qualitativ hochwertiger und damit die Diagnosen genauer zu machen.

So könnten zum Beispiel auch Weichteile wie Gewebe besser abgebildet und schon kleinste Tumore erkannt werden. Ein Team der Technischen Universität München (TUM) unter der Leitung von Prof. Franz Pfeiffer, Lehrstuhl für Biomedizinische Physik, entwickelt deshalb schon seit Langem neue Röntgentechniken.

Seit 29. Oktober können die Wissenschaftler jetzt das weltweit erste Mini-Synchrotron für hoch brillante Röntgenstrahlung in ihrem Institut nutzen. Die „Munich Compact Light Source“ (MuCLS) ist Teil des neuen „Center for Advanced Laser Applications“ (CALA), einem Gemeinschaftsprojekt der TUM und der Ludwig-Maximilians-Universität München (LMU).

Neue Technik: Kollision von Elektronen und Laser

Die Firma Lyncean Technologies aus Kalifornien, die dieses Mini-Synchrotron entwickelt hat, setzte dabei eine besondere Technik ein. Große Ringbeschleuniger erzeugen Röntgenstrahlen, indem energiereiche Elektronen durch Magnete abgelenkt werden. Die hohe Energie erhalten sie durch extreme Beschleunigung, wofür die großen Ringsysteme notwendig sind.

Das neue Synchrotron nutzt eine Technik, bei der Röntgenstrahlen entstehen, wenn Laserlicht auf schnelle Elektronen trifft – in einem Raumgebiet, das halb so dünn ist wie ein menschliches Haar. Der große Vorteil: hierfür können die Elektronen sehr viel langsamer sein.

Deshalb können sie auch in einem kleinen Ringbeschleuniger von weniger als 5 Meter Umfang gespeichert werden, während dazu ein Synchrotron einen Umfang von fast tausend Metern benötigt.

„Früher mussten wir uns lange vorher bei den großen Synchrotron-Systemen anmelden, wenn wir ein Experiment machen wollten. Jetzt können wir mit einem eigenen Gerät in unseren Laboren arbeiten – das bringt uns in unseren Forschungsarbeiten sehr viel schneller voran“, so Pfeiffer.

Intensiver, variabler und mit besserer Auflösung

Das neue System hat neben der geringen Größe noch mehr Vorteile im Vergleich zu klassischen Röntgenröhren: die Röntgenstrahlen sind extrem hell und intensiv. Die Energie der Strahlen lässt sich sehr genau steuern, so dass sie zum Beispiel für unterschiedliche Gewebetypen einsetzbar sind. Zudem ermöglichen sie eine sehr viel bessere räumliche Auflösung, weil der Entstehungsort des Strahls durch die gezielte Kollision weniger diffus ist.

„Mit der brillanten Strahlung lassen sich einzelne Materialien besser unterscheiden wodurch wir in Zukunft schon sehr viel kleinere Tumore im Gewebe erkennen können. Unser Forschungsspektrum wird aber auch die Vermessung von Knocheneigenschaften bei Osteoporose oder die Bestimmung veränderter Lungenbläschengröße bei diversen Lungenkrankheiten umfassen“, so Dr. Klaus Achterhold aus dem MuCLS-Team.

Die Wissenschaftler werden das Gerät erstmal vor allem für vorklinische Forschung verwenden, indem sie Gewebeproben von Patienten untersuchen. Außerdem kombinieren sie die neue Röntgenquelle mit anderen Systemen, wie dem Phasenkontrast. Die neuartige Röntgenphasenkontrast-Technik hat die Gruppe von Franz Pfeiffer führend mitentwickelt und verfeinert.

Download von Bildmaterial: https://mediatum.ub.tum.de/?id=1280130#1280130
Bildergalerie zum Aufbau der Röntgenquelle (YouTube, 1:59 min): https://youtu.be/bJiSe6HwrkU

Kontakt
Dr. Klaus Achterhold
Technische Universität München
Fakultät für Physik (E17)
Tel.: +49 (0)89 289 – 12559
klaus.achterhold@ph.tum.de

Weitere Informationen:

http://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/32713 - Die Pressemeldung im Web
http://www.e17.ph.tum.de - TUM Lehrstuhl für Biomedizinische Physik (Prof. Franz Pfeiffer)

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie