Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weltrekord bei Ein-Loop-Berechnungen

01.12.2011
Berechnungsmethode für Streuexperimente in der Elementarteilchenphysik wesentlich verbessert

Wissenschaftler am Institut für Physik der Johannes Gutenberg-Universität Mainz (JGU) haben einen neuen Rekord bei der Berechnung von Streuexperimenten aufgestellt. Solche Berechnungen dienen für Vorhersagen über den Ausgang von Beschleunigerexperimenten, bei denen Teilchen mit hohen Energien aufeinanderprallen.


Das Feynman-Diagramm zeigt eine Kollision von Elektron und Positron (links) und deren Annihilation sowie die Bildung von einem Quark, einem Antiquark und fünf Gluonen (rechts).
Abb.: THEP, Universität Mainz

Allerdings werden die Rechnungen immer schwieriger, je mehr Ordnungen die Physiker ausrechnen wollen. Die Arbeitsgruppe von Univ.-Prof. Dr. Stefan Weinzierl hat nun einen Algorithmus entwickelt, der wesentlich schneller ist und weniger Rechnerkapazitäten beansprucht als andere Algorithmen. „Wir haben einen großen Sprung gemacht und eine völlig neue Methode angewandt, mit der wir wesentlich mehr ausrechnen können als zuvor“, erklärt Weinzierl. Er geht davon aus, dass das neue Berechnungsverfahren sowohl für die abgeschlossenen Experimente des Large Electron-Positron Collider (LEP), der bis 2000 beim Genfer Forschungszentrum CERN in Betrieb war, genutzt werden kann als auch für die neuen Experimente am Large Hadron Collider (LHC).

Der neue Algorithmus ermöglicht beispielsweise die Berechnung von physikalischen Größen beim Zusammenstoß eines Elektrons mit seinem Antiteilchen, dem Positron, bei dem ein Quark, ein Antiquark sowie Gluonen entstehen. Erstmals überhaupt konnte eine Ein-Schleifen-Berechnung für acht äußere Teilchen erstellt werden – ein neuer Weltrekord in der theoretischen Hochenergiephysik.

Präzisionsberechnungen in der Elementarteilchenphysik beruhen auf der Störungstheorie und können durch sogenannte Schleifen-Diagramme dargestellt werden. Je größer die Anzahl der externen Teilchen, desto schwieriger die Berechnung.

Der jetzt verwendete Algorithmus nutzt eine neue und effiziente Methode auf der Basis von Subtraktion und numerischer Integration. Die Berechnungen wurden auf einer PC-Clusteranlage am Rechenzentrum der Universität Mainz durchgeführt. Die neue Methode ist nach Darstellung von Weinzierl nicht auf Elektron-Positron-Annihilationen beschränkt, sondern kann mit geringfügigen Modifikationen auch auf Hadron-Hadron-Kollisionen angewandt werden, wie sie auch am Genfer LHC stattfinden. Damit wollen sich die theoretischen Physiker an der Uni Mainz in naher Zukunft beschäftigen.

Die Arbeiten von Prof. Stefan Weinzierl sind in das Mainzer Exzellenzcluster „Precision Physics, Fundamental Interactions and Structure of Matter" (PRISMA) integriert, das den wichtigen Schritt in die abschließende Auswahlrunde der Bundesexzellenzinitiative geschafft hat und einen Förderantrag für die zweite Runde eingereicht hat.

Weitere Informationen:
Univ.-Prof. Dr. Stefan Weinzierl
Theoretische Elementarteilchenphysik (THEP)
Institut für Physik
Johannes Gutenberg-Universität Mainz (JGU)
55099 Mainz
Tel. +49 (0) 6131 39-25579
Fax +49 (0) 6131 39-24611
E-Mail: stefanw@thep.physik.uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.uni-mainz.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Sterngeburt in den Winden supermassereicher Schwarzer Löcher
28.03.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Das anwachsende Ende der Ordnung
27.03.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit