Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weltrekord für Elektronen-Kameras

08.07.2015

Es ist eine der schnellsten Kameras der Welt: Einer Forschungsgruppe der Universität Kassel sind Aufnahmen von Kristallschwingungen von unter einer billionstel Sekunde Dauer gelungen. Die Physikerinnen und Physiker arbeiteten dafür nicht mit Licht, sondern mit Elektronen. Die Ergebnisse wurden jetzt in einem renommierten Fachjournal veröffentlicht.

Filme in Zeitlupe machen Bewegungen sichtbar, die für das menschliche Auge zu schnell sind. Dafür müssen viele einzelne Bilder aufgenommen werden, von denen jedes nur einen Bruchteil einer Sekunde belichtet wird, zum Beispiel eine tausendstel Sekunde bei Sportaufnahmen.


Der rote Laser regt den Kristall (gold) zum Schwingen an. Der hellblaue Laser erzeugt ein Elektronenpaket (dunkelblau), das durch den Kristall fliegt und auf dem Schirm ein Beugungsbild erzeugt.

Grafik: Uni Kassel

Am Institut für Physik der Universität Kassel wurde nun ein Experiment durchgeführt, das wie eine Kamera mit Belichtungszeiten kleiner als eine billionstel Sekunde funktioniert. Damit untersuchen die Wissenschaftler um Professor Dr. Thomas Baumert und Dr. Arne Senftleben winzige Bewegungen von Kohlenstoff-Atomen in einem Graphitkristall.

Wird der Kristall erwärmt, so schwingen die Atome im Material hin und her. Solche Schwingungen oder andere Änderungen der Kristallstruktur kann das neue Experiment filmen, das war bislang nicht möglich.

Die Kamera arbeitet nicht mit Licht, sondern mit Elektronen, die die regelmäßige Struktur des Kristalls abbilden können. Ergebnis sind daher auch keine Fotografien im herkömmlichen Sinne, sondern sogenannte Beugungsbilder, aus denen sich die Anordnung der Atome berechnen lässt. Zum Filmen von Kristallschwingungen benötigt man Pakete von Elektronen, die schneller durch das Graphit fliegen, als die Atome schwingen.

Diese brauchen weniger als eine billionstel Sekunde, um einmal hin und her zu schwingen. Elektronenpakete von noch kürzerer Zeitdauer sind äußerst schwierig zu erzeugen, da sie sich durch die gegenseitige Abstoßung der Elektronen ausdehnen wie ein zusammengedrückter Gummiball. Den Kasseler Forschern ist genau dies jedoch gelungen, vor allem dadurch, dass sie die wichtigsten Komponenten des Experiments möglichst dicht zusammen gerückt haben.

„So haben die Elektronenpakete schlicht weniger Zeit, um sich auszudehnen“, stellt Professor Baumert fest, Leiter des Fachgebiets Femtosekundenspektroskopie und ultraschnelle Laserkontrolle an der Universität Kassel.

Wie die Arbeitsgruppe jetzt in der Fachzeitschrift New Journal of Physics berichtet, arbeitet die neue Kristallkamera mit Elektronenpaketen, die im besten Fall nur 120 billiardstel Sekunden lang sind. „Laut Aussagen anderer Forscher hält unser Experiment damit den aktuellen Weltrekord für vergleichbare Anlagen“, berichtet Christian Gerbig. Er hat die Arbeiten in Kassel im Rahmen seiner Doktorarbeit maßgeblich vorangetrieben.

Zwar gibt es schnellere „Kameras“ die ausschließlich mit Lichtpulsen arbeiten. Diese sind kürzer als Elektronenpulse und haben nicht das Problem der Ausdehnung der Pulse. Nur Elektronen- oder Röntgenstrahlen können jedoch die innere Struktur eines Kristalls sichtbar machen. Röntgenkameras mit vergleichbar kurzen Belichtungszeiten erfordern sehr aufwändige Maschinen.

Zurzeit untersuchen die Wissenschaftlerinnen und Wissenschaftler mit der Elektronen-Kamera weitere Materialien. Die Forscher interessieren sich unter anderem dafür, wie sich Schwingungen in aufeinander geklebten Kristallen verschiedener Struktur ausbreiten.

Bilder frei zur Verwendung:
Bild 1: http://www.uni-kassel.de/uni/fileadmin/datas/uni/presse/anhaenge/2015/schema.JPG
Schematischer Blick in die Elektronen-Kamera: Der rote Laser regt den Kristall (gold) zum Schwingen an. Der hellblaue Laser erzeugt ein Elektronenpaket (dunkelblau), das durch den Kristall fliegt und auf dem schwarzen Schirm (hinten) ein Beugungsbild erzeugt. Dieses enthält Informationen über die Kristallstruktur: Man erkennt direkt die charakteristische Sechseck-Struktur von Graphit.

Bild 2: http://www.uni-kassel.de/uni/fileadmin/datas/uni/presse/anhaenge/2015/Gruppe.JPG
Bildunterschrift: Die Elektronen-Kamera mit einem Teil des Forschungsteams. Von links nach rechts: Dr. Arne Senftleben, Marlene Adrian, Prof. Dr. Thomas Baumert, Christian Gerbig. Foto: Uni Kassel.

Link zur Originalveröffentlichung in englischer Sprache:
http://iopscience.iop.org/1367-2630/17/4/043050 (frei verfügbar)

Kontakt:
Dr. Arne Senftleben
Universität Kassel
Fachgebiet Femtosekundenspektroskopie und ultraschnelle Laserkontrolle (Experimentalphysik III)
Tel. 0561 804-4294
E-Mail: arne.senftleben@uni-kassel.de

Prof. Dr. Thomas Baumert
Universität Kassel
Fachgebiet Femtosekundenspektroskopie und ultraschnelle Laserkontrolle (Experimentalphysik III)
Tel. 0561 804-4452
E-Mail: baumert@physik.uni-kassel.de


Über das Fachgebiet Femtosekundenspektroskopie und ultraschnelle Laserkontrolle:
Wie reagieren Atome, Moleküle und Oberflächen auf die Bestrahlung mit sehr kurzen und intensiven Laserpulsen? Lassen sich beliebige Laserpulse mit einem Frequenzmischer erzeugen? Kann man mit solchen Pulsen quantenphysikalische Vorgänge manipulieren oder Oberflächen gezielt bearbeiten? Mit diesen und ähnlichen Fragestellungen befasst sich die Arbeitsgruppe Femtosekundenspektroskopie und ultraschnelle Laserkontrolle (Experimentalphysik III) an der Universität Kassel unter der Leitung von Prof. Dr. Thomas Baumert. Herzstück der experimentellen Labore sind zwei Lasersysteme, die kurze Lichtpulse von nur wenigen zehn billiardstel Sekunden erzeugen. Etwa 15 Studierende fertigen zurzeit ihre Bachelor-, Master- oder Doktorarbeit in der Arbeitsgruppe an.

Weitere Informationen:

http://www.uni-kassel.de

Sebastian Mense | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Perspektiven durch gespiegelte Systeme
05.12.2016 | Friedrich-Schiller-Universität Jena

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten