Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weltrekord für Elektronen-Kameras

08.07.2015

Es ist eine der schnellsten Kameras der Welt: Einer Forschungsgruppe der Universität Kassel sind Aufnahmen von Kristallschwingungen von unter einer billionstel Sekunde Dauer gelungen. Die Physikerinnen und Physiker arbeiteten dafür nicht mit Licht, sondern mit Elektronen. Die Ergebnisse wurden jetzt in einem renommierten Fachjournal veröffentlicht.

Filme in Zeitlupe machen Bewegungen sichtbar, die für das menschliche Auge zu schnell sind. Dafür müssen viele einzelne Bilder aufgenommen werden, von denen jedes nur einen Bruchteil einer Sekunde belichtet wird, zum Beispiel eine tausendstel Sekunde bei Sportaufnahmen.


Der rote Laser regt den Kristall (gold) zum Schwingen an. Der hellblaue Laser erzeugt ein Elektronenpaket (dunkelblau), das durch den Kristall fliegt und auf dem Schirm ein Beugungsbild erzeugt.

Grafik: Uni Kassel

Am Institut für Physik der Universität Kassel wurde nun ein Experiment durchgeführt, das wie eine Kamera mit Belichtungszeiten kleiner als eine billionstel Sekunde funktioniert. Damit untersuchen die Wissenschaftler um Professor Dr. Thomas Baumert und Dr. Arne Senftleben winzige Bewegungen von Kohlenstoff-Atomen in einem Graphitkristall.

Wird der Kristall erwärmt, so schwingen die Atome im Material hin und her. Solche Schwingungen oder andere Änderungen der Kristallstruktur kann das neue Experiment filmen, das war bislang nicht möglich.

Die Kamera arbeitet nicht mit Licht, sondern mit Elektronen, die die regelmäßige Struktur des Kristalls abbilden können. Ergebnis sind daher auch keine Fotografien im herkömmlichen Sinne, sondern sogenannte Beugungsbilder, aus denen sich die Anordnung der Atome berechnen lässt. Zum Filmen von Kristallschwingungen benötigt man Pakete von Elektronen, die schneller durch das Graphit fliegen, als die Atome schwingen.

Diese brauchen weniger als eine billionstel Sekunde, um einmal hin und her zu schwingen. Elektronenpakete von noch kürzerer Zeitdauer sind äußerst schwierig zu erzeugen, da sie sich durch die gegenseitige Abstoßung der Elektronen ausdehnen wie ein zusammengedrückter Gummiball. Den Kasseler Forschern ist genau dies jedoch gelungen, vor allem dadurch, dass sie die wichtigsten Komponenten des Experiments möglichst dicht zusammen gerückt haben.

„So haben die Elektronenpakete schlicht weniger Zeit, um sich auszudehnen“, stellt Professor Baumert fest, Leiter des Fachgebiets Femtosekundenspektroskopie und ultraschnelle Laserkontrolle an der Universität Kassel.

Wie die Arbeitsgruppe jetzt in der Fachzeitschrift New Journal of Physics berichtet, arbeitet die neue Kristallkamera mit Elektronenpaketen, die im besten Fall nur 120 billiardstel Sekunden lang sind. „Laut Aussagen anderer Forscher hält unser Experiment damit den aktuellen Weltrekord für vergleichbare Anlagen“, berichtet Christian Gerbig. Er hat die Arbeiten in Kassel im Rahmen seiner Doktorarbeit maßgeblich vorangetrieben.

Zwar gibt es schnellere „Kameras“ die ausschließlich mit Lichtpulsen arbeiten. Diese sind kürzer als Elektronenpulse und haben nicht das Problem der Ausdehnung der Pulse. Nur Elektronen- oder Röntgenstrahlen können jedoch die innere Struktur eines Kristalls sichtbar machen. Röntgenkameras mit vergleichbar kurzen Belichtungszeiten erfordern sehr aufwändige Maschinen.

Zurzeit untersuchen die Wissenschaftlerinnen und Wissenschaftler mit der Elektronen-Kamera weitere Materialien. Die Forscher interessieren sich unter anderem dafür, wie sich Schwingungen in aufeinander geklebten Kristallen verschiedener Struktur ausbreiten.

Bilder frei zur Verwendung:
Bild 1: http://www.uni-kassel.de/uni/fileadmin/datas/uni/presse/anhaenge/2015/schema.JPG
Schematischer Blick in die Elektronen-Kamera: Der rote Laser regt den Kristall (gold) zum Schwingen an. Der hellblaue Laser erzeugt ein Elektronenpaket (dunkelblau), das durch den Kristall fliegt und auf dem schwarzen Schirm (hinten) ein Beugungsbild erzeugt. Dieses enthält Informationen über die Kristallstruktur: Man erkennt direkt die charakteristische Sechseck-Struktur von Graphit.

Bild 2: http://www.uni-kassel.de/uni/fileadmin/datas/uni/presse/anhaenge/2015/Gruppe.JPG
Bildunterschrift: Die Elektronen-Kamera mit einem Teil des Forschungsteams. Von links nach rechts: Dr. Arne Senftleben, Marlene Adrian, Prof. Dr. Thomas Baumert, Christian Gerbig. Foto: Uni Kassel.

Link zur Originalveröffentlichung in englischer Sprache:
http://iopscience.iop.org/1367-2630/17/4/043050 (frei verfügbar)

Kontakt:
Dr. Arne Senftleben
Universität Kassel
Fachgebiet Femtosekundenspektroskopie und ultraschnelle Laserkontrolle (Experimentalphysik III)
Tel. 0561 804-4294
E-Mail: arne.senftleben@uni-kassel.de

Prof. Dr. Thomas Baumert
Universität Kassel
Fachgebiet Femtosekundenspektroskopie und ultraschnelle Laserkontrolle (Experimentalphysik III)
Tel. 0561 804-4452
E-Mail: baumert@physik.uni-kassel.de


Über das Fachgebiet Femtosekundenspektroskopie und ultraschnelle Laserkontrolle:
Wie reagieren Atome, Moleküle und Oberflächen auf die Bestrahlung mit sehr kurzen und intensiven Laserpulsen? Lassen sich beliebige Laserpulse mit einem Frequenzmischer erzeugen? Kann man mit solchen Pulsen quantenphysikalische Vorgänge manipulieren oder Oberflächen gezielt bearbeiten? Mit diesen und ähnlichen Fragestellungen befasst sich die Arbeitsgruppe Femtosekundenspektroskopie und ultraschnelle Laserkontrolle (Experimentalphysik III) an der Universität Kassel unter der Leitung von Prof. Dr. Thomas Baumert. Herzstück der experimentellen Labore sind zwei Lasersysteme, die kurze Lichtpulse von nur wenigen zehn billiardstel Sekunden erzeugen. Etwa 15 Studierende fertigen zurzeit ihre Bachelor-, Master- oder Doktorarbeit in der Arbeitsgruppe an.

Weitere Informationen:

http://www.uni-kassel.de

Sebastian Mense | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie