Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Welle-Teilchen-Dualismus im Spiegelkabinett

01.07.2011
Ein Atom zwischen zwei Spiegeln liefert tiefere Einblicke in die Wechselwirkung von Licht und Materie

Wie Licht mit Materie wechselwirkt, verstehen Physiker jetzt ein bisschen besser. Physiker des Max-Planck-Institut für Quantenoptik haben ein Atom beobachtet, das gewissermaßen in passenden Lichtquanten badet und sich darin wie eine Quantenantenne verhält, die Lichtwellen sendet.



Prinzip des Garchinger Experiments: Unten fangen Laserstrahlen Rubidiumatome ein und kühlen diese durch Abbremsen ab. Laserlicht lässt aus dieser Wolke eine kleine Fontäne von einzelnen, ultrakalten Atomen hochfliegen. Jeweils eines wird für einige Millisekunden zwischen zwei Superspiegeln gefangen. In diesem Spiegelkabinett – dem Resonator – flitzen zudem einige wenige Laserlichtquanten hin und her. Sie wechselwirken intensiv mit dem Atom. © MPI für Quantenoptik

Dabei nimmt ein Rubidiumatom, das in einer Art Mikrospiegelkabinett gefangen ist, jeweils zwei Lichtquanten (Photonen) zugleich auf und sendet sie kurz darauf wieder aus. Die Photonen stehen danach in einer engen Quantenbeziehung zueinander: Das Licht ist „gequetscht“, heißt das in der Physik. Dieser fundamentale Effekt wurde bereits Anfang der 1980er-Jahre vorhergesagt. Doch erst den Garchingern gelang der Nachweis mit einem einzelnen Atom.

Im Jahr 1905 zeigte Albert Einstein, dass Materie Energie aus Licht in Portionen – Quanten – aufnimmt. Einige Jahre später konstruierte der dänische Quantenpionier Niels Bohr auf dieser Basis das Bohrsche Atommodell, das heute zum Schulstoff gehört. Das radikal Neue an diesem Modell lag darin, dass die Elektronen sich nur auf bestimmten Bahnen um den Kern bewegen durften. Diese Bahnen bilden als Quantenzustände eine Energieleiter. Rüttelt ein Lichtquant (Photon) am Atom, dann kann ein Elektron es schlucken und die Leiter hinauf springen. Allerdings muss die Energie des Photons genau zu einem Sprossenabstand der Energieleiter passen. Umgekehrt können die Elektronen die Leiter hinunter fallen. Dann strahlt das Atom Photonen mit genau passenden Energieportionen ab. Heutige Atommodelle sind zwar komplexer, gehorchen aber nach wie vor diesem Grundprinzip.

Allerdings beschreibt das von Einstein und Bohr entworfene Modell nur eine Seite der Medaille, erläutert Karim Murr, der das Garchinger Experiment als Theoretiker begleitete: „Es behandelt das Licht nur als Teilchen – nach der Quantenmechanik ist es aber weder Teilchen noch Welle.“ Licht trägt beide Eigenschaften in sich, und je nach Situation verhält es sich eher wie ein Teilchen oder eine Welle. Im Bild nach Einstein und Bohr kann ein Atom ein Photon als Energieportion schlucken (absorbieren) und später ein Photon gleicher Energie wieder aussenden (emittieren). Diese beiden Photonen haben aber keinerlei Verbindung zu einander: Der Vorgang der Absorption und der Emission sind gleichsam voneinander abgeschnitten. Setzt man jedoch ein einzelnes Atom in eine spezielle Umgebung, dann kann eine solche Verbindung zwischen den beteiligten Photonen entstehen. Das Interessante daran: Die Wellennatur der Photonen beginnt eine Rolle zu spielen. Sehr einfach gesagt, „spüren“ die absorbierten und emittierten Photonen sich gegenseitig, da Wellen zeitlich und räumlich ausgedehnte Gebilde sind.

Das Garchinger Team um Alexei Ourjoumtsev in der Abteilung von Gerhard Rempe, Direktor am Max-Planck-Institut für Quantenoptik, hat in seinem Experiment eine solche Umgebung geschaffen. Zuerst bremsen sie Rubidiumatome mit Laserlicht ab. Da Bewegung gleichbedeutend mit Wärme ist, kühlt die im Licht gefangene Atomwolke auf wenige Millionstel Grad über den absoluten Temperaturnullpunkt ab. Dieses Verfahren ist heute Standard. Nun aber kicken die Garchinger mit Laserlicht eine kleine Fontäne einzelner Atome aus der Wolke heraus. Diese fliegen nach oben in einen sogenannten optischen Resonator. Er besteht aus zwei extrem guten Spiegeln. Das „Spiegelkabinett“ sei nahezu perfekt, erläutert Karim Murr : „Man könnte sich selbst darin in hunderttausend ineinander gespiegelten Bildern sehen.“ Allerdings würde man seinen Kopf nicht zwischen die Spiegel bekommen, denn sie haben nur gut einen Zehntel Millimeter Abstand von einander.

Das Atom und zwei Photonen verlieren ihre Teilchen-Identität
Ein winziges Atom hingegen passt bequem in diesen Spalt. Der Resonator fängt es zusammen mit Laserphotonen ein, die zwischen seinen Spiegeln wie Ping-Pong-Bälle hin und her flitzen. Für den gesuchten, eher wellenartigen Quanteneffekt ist es dabei wichtig, dass es nur ganz wenige Photonen sind. Würden viele Lichtquanten auf das Atom einprasseln, dann würde es nämlich das Licht eher als Teilchen konsumieren – wie Einstein und Bohr es beschrieben haben.

Wichtig für das Experiment ist zudem, dass die wenigen Photonen sehr oft Kontakt zu dem Atom haben. Das Atom muss also lange genug im Photonen-Ping-Pong im Resonator verharren. Tatsächlich sind es zehn bis zwanzig Millisekunden. Einige Tausendstel Sekunden klingen zwar für uns kurz, sind aber in der Quantenoptik eine kleine Ewigkeit. „In dieser Zeit können die Photonen im Resonator ungefähr hunderttausend Mal mit dem Atom wechselwirken“, erläutert Murr.

Bei diesem intensiven Kontakt mit dem Atom geschieht etwas Faszinierendes: Zwei Photonen zusammen formen mit dem Atom ein gemeinsames Objekt, das man sich wie eine Art Molekül vorstellen kann. Alle Beteiligten verlieren dabei vollkommen ihre Identität als einzelne Teilchen. Für diesen Zustand hat der österreichische Physiker Erwin Schrödinger den Begriff „verschränkt“ geprägt.

Photonenpärchen für quantenlogische Bauelemente
Was dabei geschieht, sagten die Theoretiker Peter Zoller und Dan Walls bereits Anfang der 1980er-Jahre voraus. Sie hatten sich dieses Gedankenexperiment ausgedacht, weil es einen tieferen Einblick in die Quantennatur der Wechselwirkung zwischen Licht und Materie erlaubt. Wenn das Atom im Resonator zwei Photonen gleicher Energie absorbiert und wieder emittiert, dann geschieht das auf besondere Weise: Beide Photonen haben jeweils für sich genommen exakt die Energie, die dem Quantensprung im Atom entspricht. Bei einer „richtigen“ Absorption wäre das also das Doppelte der Energie, die das Atom eigentlich aufnehmen kann. Es würde demnach im Normalfall nur ein Photon schlucken können. „Hier aber absorbiert das Atom die Photonen gar nicht so richtig und springt damit auch nicht so richtig in einen höheren Energiezustand“, erklärt Murr. Stattdessen gehen die zwei Photonen mit dem Atom kurzzeitig diese verschränkte Quantenehe ein. Aber wie können die Garchinger „sehen“, was dabei passiert?

Hier hilft, dass auch der perfekteste Spiegel nicht vollkommen ist. Deshalb entwischt immer wieder einmal eines der Photonen durch einen Spiegel nach außen. Dort gerät es in ein Messinstrument. Das registriert aber nicht einfach das Photon als Teilchen. „Sonst wären wir wieder bei der Einsteinschen Beschreibung, die Photonen als Teilchen ansieht“, sagt Murr. Stattdessen misst es eine Welleneigenschaft des Photons, genauer das Schwingen seines elektrischen Feldes. Das ist eine enorme Herausforderung, denn das Lichtsignal der wenigen Photonen ist extrem schwach. Deshalb brauchte das Forscherteam für ein aussagekräftiges Ergebnis zwei Wochen Messzeit.

Eine Eigenschaft der gemessenen Photonen, die in der Physik „gequetschtes Licht“ heißt, verriet den Garchingern etwas Grundlegendes: Das Atom im Resonator verhält sich wie eine Art Quantenantenne. Es schwingt wie eine Fernsehantenne im elektromagnetischen Feld der beiden Lichtquanten mit – tauscht aber dabei Energie in quantisierten Portionen aus. Weder das Wellenbild der klassischen Physik noch das Teilchenbild alleine können dieses Verhalten erklären. Das ist typisch für die Quantenmechanik.

„Für mich ging es bei diesem Experiment um fundamentale Physik“, erklärt Karim Murr. Einige Forschungsteams verfolgten das Garchinger Experiment mit Spannung, weil sie sich für eine technische Anwendung interessieren. Sie wollen diese besonderen Photonenpärchen in sogenannten künstlichen Atomen, zum Beispiel aus winzigen Halbleiterstrukturen, herstellen. „Damit ließen sich interessante quantenlogische Bauelemente konstruieren“, erklärt Murr. Das Garchinger Experiment könnte also noch einige Wellen schlagen.

Ansprechpartner
Prof. Dr. Dr. habil. Gerhard Rempe
Max-Planck-Institut für Quantenoptik, Garching
Telefon: +49 89 32905-701
Fax: +49 89 32905-311
E-Mail: gerhard.rempe@mpq.mpg.de
Dr. Karim Murr
Max-Planck-Institut für Quantenoptik, Garching
Telefon: +49 89 32905-243
E-Mail: karim.murr@mpq.mpg.de
Originalpublikation
A. Ourjoumtsev et al.
Observation of squeezed light from one atom excited with two photons
Nature, 30. Juni 2011; doi

Prof. Dr. Dr. habil. Gerhard Rempe | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de
http://www.mpg.de/4356750/atom_zwei_spiegel

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht CAST-Projekt setzt Dunkler Materie neue Grenzen
23.05.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Heiße Materialien: Fachartikel zum pyroelektrischen Koeffizienten
23.05.2017 | Technische Universität Bergakademie Freiberg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie