Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Welle-Teilchen-Dualismus im Spiegelkabinett

01.07.2011
Ein Atom zwischen zwei Spiegeln liefert tiefere Einblicke in die Wechselwirkung von Licht und Materie

Wie Licht mit Materie wechselwirkt, verstehen Physiker jetzt ein bisschen besser. Physiker des Max-Planck-Institut für Quantenoptik haben ein Atom beobachtet, das gewissermaßen in passenden Lichtquanten badet und sich darin wie eine Quantenantenne verhält, die Lichtwellen sendet.



Prinzip des Garchinger Experiments: Unten fangen Laserstrahlen Rubidiumatome ein und kühlen diese durch Abbremsen ab. Laserlicht lässt aus dieser Wolke eine kleine Fontäne von einzelnen, ultrakalten Atomen hochfliegen. Jeweils eines wird für einige Millisekunden zwischen zwei Superspiegeln gefangen. In diesem Spiegelkabinett – dem Resonator – flitzen zudem einige wenige Laserlichtquanten hin und her. Sie wechselwirken intensiv mit dem Atom. © MPI für Quantenoptik

Dabei nimmt ein Rubidiumatom, das in einer Art Mikrospiegelkabinett gefangen ist, jeweils zwei Lichtquanten (Photonen) zugleich auf und sendet sie kurz darauf wieder aus. Die Photonen stehen danach in einer engen Quantenbeziehung zueinander: Das Licht ist „gequetscht“, heißt das in der Physik. Dieser fundamentale Effekt wurde bereits Anfang der 1980er-Jahre vorhergesagt. Doch erst den Garchingern gelang der Nachweis mit einem einzelnen Atom.

Im Jahr 1905 zeigte Albert Einstein, dass Materie Energie aus Licht in Portionen – Quanten – aufnimmt. Einige Jahre später konstruierte der dänische Quantenpionier Niels Bohr auf dieser Basis das Bohrsche Atommodell, das heute zum Schulstoff gehört. Das radikal Neue an diesem Modell lag darin, dass die Elektronen sich nur auf bestimmten Bahnen um den Kern bewegen durften. Diese Bahnen bilden als Quantenzustände eine Energieleiter. Rüttelt ein Lichtquant (Photon) am Atom, dann kann ein Elektron es schlucken und die Leiter hinauf springen. Allerdings muss die Energie des Photons genau zu einem Sprossenabstand der Energieleiter passen. Umgekehrt können die Elektronen die Leiter hinunter fallen. Dann strahlt das Atom Photonen mit genau passenden Energieportionen ab. Heutige Atommodelle sind zwar komplexer, gehorchen aber nach wie vor diesem Grundprinzip.

Allerdings beschreibt das von Einstein und Bohr entworfene Modell nur eine Seite der Medaille, erläutert Karim Murr, der das Garchinger Experiment als Theoretiker begleitete: „Es behandelt das Licht nur als Teilchen – nach der Quantenmechanik ist es aber weder Teilchen noch Welle.“ Licht trägt beide Eigenschaften in sich, und je nach Situation verhält es sich eher wie ein Teilchen oder eine Welle. Im Bild nach Einstein und Bohr kann ein Atom ein Photon als Energieportion schlucken (absorbieren) und später ein Photon gleicher Energie wieder aussenden (emittieren). Diese beiden Photonen haben aber keinerlei Verbindung zu einander: Der Vorgang der Absorption und der Emission sind gleichsam voneinander abgeschnitten. Setzt man jedoch ein einzelnes Atom in eine spezielle Umgebung, dann kann eine solche Verbindung zwischen den beteiligten Photonen entstehen. Das Interessante daran: Die Wellennatur der Photonen beginnt eine Rolle zu spielen. Sehr einfach gesagt, „spüren“ die absorbierten und emittierten Photonen sich gegenseitig, da Wellen zeitlich und räumlich ausgedehnte Gebilde sind.

Das Garchinger Team um Alexei Ourjoumtsev in der Abteilung von Gerhard Rempe, Direktor am Max-Planck-Institut für Quantenoptik, hat in seinem Experiment eine solche Umgebung geschaffen. Zuerst bremsen sie Rubidiumatome mit Laserlicht ab. Da Bewegung gleichbedeutend mit Wärme ist, kühlt die im Licht gefangene Atomwolke auf wenige Millionstel Grad über den absoluten Temperaturnullpunkt ab. Dieses Verfahren ist heute Standard. Nun aber kicken die Garchinger mit Laserlicht eine kleine Fontäne einzelner Atome aus der Wolke heraus. Diese fliegen nach oben in einen sogenannten optischen Resonator. Er besteht aus zwei extrem guten Spiegeln. Das „Spiegelkabinett“ sei nahezu perfekt, erläutert Karim Murr : „Man könnte sich selbst darin in hunderttausend ineinander gespiegelten Bildern sehen.“ Allerdings würde man seinen Kopf nicht zwischen die Spiegel bekommen, denn sie haben nur gut einen Zehntel Millimeter Abstand von einander.

Das Atom und zwei Photonen verlieren ihre Teilchen-Identität
Ein winziges Atom hingegen passt bequem in diesen Spalt. Der Resonator fängt es zusammen mit Laserphotonen ein, die zwischen seinen Spiegeln wie Ping-Pong-Bälle hin und her flitzen. Für den gesuchten, eher wellenartigen Quanteneffekt ist es dabei wichtig, dass es nur ganz wenige Photonen sind. Würden viele Lichtquanten auf das Atom einprasseln, dann würde es nämlich das Licht eher als Teilchen konsumieren – wie Einstein und Bohr es beschrieben haben.

Wichtig für das Experiment ist zudem, dass die wenigen Photonen sehr oft Kontakt zu dem Atom haben. Das Atom muss also lange genug im Photonen-Ping-Pong im Resonator verharren. Tatsächlich sind es zehn bis zwanzig Millisekunden. Einige Tausendstel Sekunden klingen zwar für uns kurz, sind aber in der Quantenoptik eine kleine Ewigkeit. „In dieser Zeit können die Photonen im Resonator ungefähr hunderttausend Mal mit dem Atom wechselwirken“, erläutert Murr.

Bei diesem intensiven Kontakt mit dem Atom geschieht etwas Faszinierendes: Zwei Photonen zusammen formen mit dem Atom ein gemeinsames Objekt, das man sich wie eine Art Molekül vorstellen kann. Alle Beteiligten verlieren dabei vollkommen ihre Identität als einzelne Teilchen. Für diesen Zustand hat der österreichische Physiker Erwin Schrödinger den Begriff „verschränkt“ geprägt.

Photonenpärchen für quantenlogische Bauelemente
Was dabei geschieht, sagten die Theoretiker Peter Zoller und Dan Walls bereits Anfang der 1980er-Jahre voraus. Sie hatten sich dieses Gedankenexperiment ausgedacht, weil es einen tieferen Einblick in die Quantennatur der Wechselwirkung zwischen Licht und Materie erlaubt. Wenn das Atom im Resonator zwei Photonen gleicher Energie absorbiert und wieder emittiert, dann geschieht das auf besondere Weise: Beide Photonen haben jeweils für sich genommen exakt die Energie, die dem Quantensprung im Atom entspricht. Bei einer „richtigen“ Absorption wäre das also das Doppelte der Energie, die das Atom eigentlich aufnehmen kann. Es würde demnach im Normalfall nur ein Photon schlucken können. „Hier aber absorbiert das Atom die Photonen gar nicht so richtig und springt damit auch nicht so richtig in einen höheren Energiezustand“, erklärt Murr. Stattdessen gehen die zwei Photonen mit dem Atom kurzzeitig diese verschränkte Quantenehe ein. Aber wie können die Garchinger „sehen“, was dabei passiert?

Hier hilft, dass auch der perfekteste Spiegel nicht vollkommen ist. Deshalb entwischt immer wieder einmal eines der Photonen durch einen Spiegel nach außen. Dort gerät es in ein Messinstrument. Das registriert aber nicht einfach das Photon als Teilchen. „Sonst wären wir wieder bei der Einsteinschen Beschreibung, die Photonen als Teilchen ansieht“, sagt Murr. Stattdessen misst es eine Welleneigenschaft des Photons, genauer das Schwingen seines elektrischen Feldes. Das ist eine enorme Herausforderung, denn das Lichtsignal der wenigen Photonen ist extrem schwach. Deshalb brauchte das Forscherteam für ein aussagekräftiges Ergebnis zwei Wochen Messzeit.

Eine Eigenschaft der gemessenen Photonen, die in der Physik „gequetschtes Licht“ heißt, verriet den Garchingern etwas Grundlegendes: Das Atom im Resonator verhält sich wie eine Art Quantenantenne. Es schwingt wie eine Fernsehantenne im elektromagnetischen Feld der beiden Lichtquanten mit – tauscht aber dabei Energie in quantisierten Portionen aus. Weder das Wellenbild der klassischen Physik noch das Teilchenbild alleine können dieses Verhalten erklären. Das ist typisch für die Quantenmechanik.

„Für mich ging es bei diesem Experiment um fundamentale Physik“, erklärt Karim Murr. Einige Forschungsteams verfolgten das Garchinger Experiment mit Spannung, weil sie sich für eine technische Anwendung interessieren. Sie wollen diese besonderen Photonenpärchen in sogenannten künstlichen Atomen, zum Beispiel aus winzigen Halbleiterstrukturen, herstellen. „Damit ließen sich interessante quantenlogische Bauelemente konstruieren“, erklärt Murr. Das Garchinger Experiment könnte also noch einige Wellen schlagen.

Ansprechpartner
Prof. Dr. Dr. habil. Gerhard Rempe
Max-Planck-Institut für Quantenoptik, Garching
Telefon: +49 89 32905-701
Fax: +49 89 32905-311
E-Mail: gerhard.rempe@mpq.mpg.de
Dr. Karim Murr
Max-Planck-Institut für Quantenoptik, Garching
Telefon: +49 89 32905-243
E-Mail: karim.murr@mpq.mpg.de
Originalpublikation
A. Ourjoumtsev et al.
Observation of squeezed light from one atom excited with two photons
Nature, 30. Juni 2011; doi

Prof. Dr. Dr. habil. Gerhard Rempe | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de
http://www.mpg.de/4356750/atom_zwei_spiegel

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Klein bestimmt über groß?
29.03.2017 | Max-Planck-Institut für Dynamik und Selbstorganisation

nachricht Quantenkommunikation: Wie man das Rauschen überlistet
29.03.2017 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten