Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Welle-Teilchen-Dualismus im Spiegelkabinett

01.07.2011
Ein Atom zwischen zwei Spiegeln liefert tiefere Einblicke in die Wechselwirkung von Licht und Materie

Wie Licht mit Materie wechselwirkt, verstehen Physiker jetzt ein bisschen besser. Physiker des Max-Planck-Institut für Quantenoptik haben ein Atom beobachtet, das gewissermaßen in passenden Lichtquanten badet und sich darin wie eine Quantenantenne verhält, die Lichtwellen sendet.



Prinzip des Garchinger Experiments: Unten fangen Laserstrahlen Rubidiumatome ein und kühlen diese durch Abbremsen ab. Laserlicht lässt aus dieser Wolke eine kleine Fontäne von einzelnen, ultrakalten Atomen hochfliegen. Jeweils eines wird für einige Millisekunden zwischen zwei Superspiegeln gefangen. In diesem Spiegelkabinett – dem Resonator – flitzen zudem einige wenige Laserlichtquanten hin und her. Sie wechselwirken intensiv mit dem Atom. © MPI für Quantenoptik

Dabei nimmt ein Rubidiumatom, das in einer Art Mikrospiegelkabinett gefangen ist, jeweils zwei Lichtquanten (Photonen) zugleich auf und sendet sie kurz darauf wieder aus. Die Photonen stehen danach in einer engen Quantenbeziehung zueinander: Das Licht ist „gequetscht“, heißt das in der Physik. Dieser fundamentale Effekt wurde bereits Anfang der 1980er-Jahre vorhergesagt. Doch erst den Garchingern gelang der Nachweis mit einem einzelnen Atom.

Im Jahr 1905 zeigte Albert Einstein, dass Materie Energie aus Licht in Portionen – Quanten – aufnimmt. Einige Jahre später konstruierte der dänische Quantenpionier Niels Bohr auf dieser Basis das Bohrsche Atommodell, das heute zum Schulstoff gehört. Das radikal Neue an diesem Modell lag darin, dass die Elektronen sich nur auf bestimmten Bahnen um den Kern bewegen durften. Diese Bahnen bilden als Quantenzustände eine Energieleiter. Rüttelt ein Lichtquant (Photon) am Atom, dann kann ein Elektron es schlucken und die Leiter hinauf springen. Allerdings muss die Energie des Photons genau zu einem Sprossenabstand der Energieleiter passen. Umgekehrt können die Elektronen die Leiter hinunter fallen. Dann strahlt das Atom Photonen mit genau passenden Energieportionen ab. Heutige Atommodelle sind zwar komplexer, gehorchen aber nach wie vor diesem Grundprinzip.

Allerdings beschreibt das von Einstein und Bohr entworfene Modell nur eine Seite der Medaille, erläutert Karim Murr, der das Garchinger Experiment als Theoretiker begleitete: „Es behandelt das Licht nur als Teilchen – nach der Quantenmechanik ist es aber weder Teilchen noch Welle.“ Licht trägt beide Eigenschaften in sich, und je nach Situation verhält es sich eher wie ein Teilchen oder eine Welle. Im Bild nach Einstein und Bohr kann ein Atom ein Photon als Energieportion schlucken (absorbieren) und später ein Photon gleicher Energie wieder aussenden (emittieren). Diese beiden Photonen haben aber keinerlei Verbindung zu einander: Der Vorgang der Absorption und der Emission sind gleichsam voneinander abgeschnitten. Setzt man jedoch ein einzelnes Atom in eine spezielle Umgebung, dann kann eine solche Verbindung zwischen den beteiligten Photonen entstehen. Das Interessante daran: Die Wellennatur der Photonen beginnt eine Rolle zu spielen. Sehr einfach gesagt, „spüren“ die absorbierten und emittierten Photonen sich gegenseitig, da Wellen zeitlich und räumlich ausgedehnte Gebilde sind.

Das Garchinger Team um Alexei Ourjoumtsev in der Abteilung von Gerhard Rempe, Direktor am Max-Planck-Institut für Quantenoptik, hat in seinem Experiment eine solche Umgebung geschaffen. Zuerst bremsen sie Rubidiumatome mit Laserlicht ab. Da Bewegung gleichbedeutend mit Wärme ist, kühlt die im Licht gefangene Atomwolke auf wenige Millionstel Grad über den absoluten Temperaturnullpunkt ab. Dieses Verfahren ist heute Standard. Nun aber kicken die Garchinger mit Laserlicht eine kleine Fontäne einzelner Atome aus der Wolke heraus. Diese fliegen nach oben in einen sogenannten optischen Resonator. Er besteht aus zwei extrem guten Spiegeln. Das „Spiegelkabinett“ sei nahezu perfekt, erläutert Karim Murr : „Man könnte sich selbst darin in hunderttausend ineinander gespiegelten Bildern sehen.“ Allerdings würde man seinen Kopf nicht zwischen die Spiegel bekommen, denn sie haben nur gut einen Zehntel Millimeter Abstand von einander.

Das Atom und zwei Photonen verlieren ihre Teilchen-Identität
Ein winziges Atom hingegen passt bequem in diesen Spalt. Der Resonator fängt es zusammen mit Laserphotonen ein, die zwischen seinen Spiegeln wie Ping-Pong-Bälle hin und her flitzen. Für den gesuchten, eher wellenartigen Quanteneffekt ist es dabei wichtig, dass es nur ganz wenige Photonen sind. Würden viele Lichtquanten auf das Atom einprasseln, dann würde es nämlich das Licht eher als Teilchen konsumieren – wie Einstein und Bohr es beschrieben haben.

Wichtig für das Experiment ist zudem, dass die wenigen Photonen sehr oft Kontakt zu dem Atom haben. Das Atom muss also lange genug im Photonen-Ping-Pong im Resonator verharren. Tatsächlich sind es zehn bis zwanzig Millisekunden. Einige Tausendstel Sekunden klingen zwar für uns kurz, sind aber in der Quantenoptik eine kleine Ewigkeit. „In dieser Zeit können die Photonen im Resonator ungefähr hunderttausend Mal mit dem Atom wechselwirken“, erläutert Murr.

Bei diesem intensiven Kontakt mit dem Atom geschieht etwas Faszinierendes: Zwei Photonen zusammen formen mit dem Atom ein gemeinsames Objekt, das man sich wie eine Art Molekül vorstellen kann. Alle Beteiligten verlieren dabei vollkommen ihre Identität als einzelne Teilchen. Für diesen Zustand hat der österreichische Physiker Erwin Schrödinger den Begriff „verschränkt“ geprägt.

Photonenpärchen für quantenlogische Bauelemente
Was dabei geschieht, sagten die Theoretiker Peter Zoller und Dan Walls bereits Anfang der 1980er-Jahre voraus. Sie hatten sich dieses Gedankenexperiment ausgedacht, weil es einen tieferen Einblick in die Quantennatur der Wechselwirkung zwischen Licht und Materie erlaubt. Wenn das Atom im Resonator zwei Photonen gleicher Energie absorbiert und wieder emittiert, dann geschieht das auf besondere Weise: Beide Photonen haben jeweils für sich genommen exakt die Energie, die dem Quantensprung im Atom entspricht. Bei einer „richtigen“ Absorption wäre das also das Doppelte der Energie, die das Atom eigentlich aufnehmen kann. Es würde demnach im Normalfall nur ein Photon schlucken können. „Hier aber absorbiert das Atom die Photonen gar nicht so richtig und springt damit auch nicht so richtig in einen höheren Energiezustand“, erklärt Murr. Stattdessen gehen die zwei Photonen mit dem Atom kurzzeitig diese verschränkte Quantenehe ein. Aber wie können die Garchinger „sehen“, was dabei passiert?

Hier hilft, dass auch der perfekteste Spiegel nicht vollkommen ist. Deshalb entwischt immer wieder einmal eines der Photonen durch einen Spiegel nach außen. Dort gerät es in ein Messinstrument. Das registriert aber nicht einfach das Photon als Teilchen. „Sonst wären wir wieder bei der Einsteinschen Beschreibung, die Photonen als Teilchen ansieht“, sagt Murr. Stattdessen misst es eine Welleneigenschaft des Photons, genauer das Schwingen seines elektrischen Feldes. Das ist eine enorme Herausforderung, denn das Lichtsignal der wenigen Photonen ist extrem schwach. Deshalb brauchte das Forscherteam für ein aussagekräftiges Ergebnis zwei Wochen Messzeit.

Eine Eigenschaft der gemessenen Photonen, die in der Physik „gequetschtes Licht“ heißt, verriet den Garchingern etwas Grundlegendes: Das Atom im Resonator verhält sich wie eine Art Quantenantenne. Es schwingt wie eine Fernsehantenne im elektromagnetischen Feld der beiden Lichtquanten mit – tauscht aber dabei Energie in quantisierten Portionen aus. Weder das Wellenbild der klassischen Physik noch das Teilchenbild alleine können dieses Verhalten erklären. Das ist typisch für die Quantenmechanik.

„Für mich ging es bei diesem Experiment um fundamentale Physik“, erklärt Karim Murr. Einige Forschungsteams verfolgten das Garchinger Experiment mit Spannung, weil sie sich für eine technische Anwendung interessieren. Sie wollen diese besonderen Photonenpärchen in sogenannten künstlichen Atomen, zum Beispiel aus winzigen Halbleiterstrukturen, herstellen. „Damit ließen sich interessante quantenlogische Bauelemente konstruieren“, erklärt Murr. Das Garchinger Experiment könnte also noch einige Wellen schlagen.

Ansprechpartner
Prof. Dr. Dr. habil. Gerhard Rempe
Max-Planck-Institut für Quantenoptik, Garching
Telefon: +49 89 32905-701
Fax: +49 89 32905-311
E-Mail: gerhard.rempe@mpq.mpg.de
Dr. Karim Murr
Max-Planck-Institut für Quantenoptik, Garching
Telefon: +49 89 32905-243
E-Mail: karim.murr@mpq.mpg.de
Originalpublikation
A. Ourjoumtsev et al.
Observation of squeezed light from one atom excited with two photons
Nature, 30. Juni 2011; doi

Prof. Dr. Dr. habil. Gerhard Rempe | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de
http://www.mpg.de/4356750/atom_zwei_spiegel

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultra-sensitiv dank quantenmechanischer Verschränkung
28.06.2017 | Universität Stuttgart

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wellen schlagen

Computerwissenschaftler verwenden die Theorie von Wellenpaketen, um realistische und detaillierte Simulationen von Wasserwellen in Echtzeit zu erstellen. Ihre Ergebnisse werden auf der diesjährigen SIGGRAPH Konferenz vorgestellt.

Denkt man an einen See, einen Fluss oder an das Meer, so sieht man vor sich, wie sich das Wasser kräuselt, wie Wellen gegen die Felsen schlagen, wie Bugwellen...

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Maßgeschneiderte Nanopartikel gegen Krebs gesucht

29.06.2017 | Biowissenschaften Chemie

Wolken über der Wetterküche: Die Azoren im Fokus eines internationalen Forschungsteams

29.06.2017 | Geowissenschaften

Wellen schlagen

29.06.2017 | Informationstechnologie