Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wegweisend für leistungsstarke Solarzellen: Hochpräzise Berechnungen molekularer Lichtabsorptionen

06.06.2011
Unter dem Stichwort "Light Harvesting" ("Lichternte") hat sich weltweit eine Forschungsrichtung etabliert, die Physik, Chemie und Materialwissenschaften miteinander verbindet.

Sie zielt auf innovative Systeme der Stromerzeugung, die nach dem Vorbild der pflanzlichen Photosynthese Lichtenergie in chemische Energie umwandeln. In diesem Zusammenhang interessiert sich die Forschung für neue kostengünstige Materialien, welche die Effizienz von Solarzellen erheblich steigern können. Hierfür hat jetzt ein Forschungsteam der Universität Bayreuth, in Kooperation mit dem Fritz-Haber-Zentrum an der Hebräischen Universität Jerusalem, wegweisende Berechnungen vorgelegt.

Die Herausforderung:
Funktionsmaterialien mit möglichst breiter Lichtabsorption
Materialien, die einen viel größeren Anteil des einfallenden Sonnenlichts aufnehmen können als die in der Photovoltaik bisher üblichen Baustoffe, sind ein wichtiger Beitrag zu leistungsstärkeren Solarzellen. Nun setzt sich das Sonnenlicht aber aus Lichtstrahlen unterschiedlicher Wellenlängen zusammen. Diese werden bei einer Lichtbeugung, z.B. in einem Regenbogen, als farbige Abschnitte eines Spektrums sichtbar. Die angestrebten Materialien sollen folglich in der Lage sein, das Sonnenlicht möglichst lückenlos aufzunehmen, d.h. Lichtenergie aus möglichst vielen Abschnitten des Spektrums zu absorbieren.

An der gezielten Erforschung solcher Materialien arbeitet ein Bayreuther Forschungsteam um Professor Mukundan Thelakkat (Polymerwissenschaft), der das EU-Forschungsprojekt LARGECELLS leitet. Hier geht es insbesondere darum, polymere Funktionsmaterialien für organische Photovoltaikzellen zu entwickeln; d.h. für neuartige Solarzellen, die sich mit einem viel geringeren Energie- und Kostenaufwand herstellen lassen als rein anorganische Photovoltaikzellen aus Silizium.

In aktuellen Forschungsarbeiten verdichteten sich die Indizien, dass eine bestimmte Gruppe von Molekülen zu einer ungewöhnlich breiten Lichtabsorption fähig sein könnte. Der zentrale Baustein dieser Moleküle ist Naphthalin-Diimid (NDI); an zwei Stellen des NDI sind Thiophenringe angehängt. Jeder Thiophenring besteht aus vier Kohlenstoff- und Wasserstoffatomen sowie einem Schwefelatom. Die Moleküle, die das Interesse der Bayreuther Forscher geweckt haben, unterscheiden sich allein durch die Anzahl der Ringe, die – wie zwei Arme – links und rechts an das NDI angehängt werden: "NDI-1" heißt ein Molekül, das an jeder Seite jeweils einen Thiophenring hat; bei "NDI-2" sind es jeweils 2 Ringe; und so fort. Verhält es sich tatsächlich so, dass die verschiedenen NDI-Moleküle Lichtenergie aus jeweils verschiedenen Abschnitten des Spektrums absorbieren? Ist daher eine Mischung von NDI-Molekülen zu einer breiten Absorption des Sonnenlichts fähig?

Computersimulationen:
Ein effizienter Wegweiser zu einer neuen Solarzellen-Generation
Diese Hypothese im Labor zu überprüfen, ist außerordentlich zeitaufwändig. Professor Stephan Kümmel, der an der Universität Bayreuth den Lehrstuhl für Theoretische Physik IV innehat, und sein Mitarbeiter Dipl.-Phys. Andreas Karolewski fanden jedoch einen Ausweg. Es gelang ihnen, die empirischen Laborversuche durch theoretische Berechnungen am Computer zu ersetzen. Mithilfe von Computersimulationen konnten sie nachweisen, dass modifizierte NDI-Moleküle Licht verschiedener Wellenlängen aufnehmen; je nachdem, wie viele Thiophenringe ihnen angehängt sind. Mehr noch: Eine Mischung aus NDI-Molekülen, denen beidseitig bis zu sieben Thiophenringe angehängt sind, kann Lichtenergie aus fast allen Abschnitten des Sonnenlicht-Spektrums absorbieren; bis hin zu den energiearmen langwelligen Lichtstrahlen. Entscheidend ist dabei der Aufbau der NDI-Moleküle. Von den Thiophenringen, die wie zwei Arme an den Außenseiten hängen, wird elektrische Ladung in den NDI-Kern geleitet. Physikalisch gesprochen: Die Thiophenringe fungieren als Donor, der NDI-Kern als Rezeptor.

Erste Laborversuche der Bayreuther Polymerwissenschaftler haben die Berechnungen bestätigt. Damit eröffnet sich eine hochinteressante Perspektive für eine neue Generation von Solarzellen. Denn eine Mischung aus NDI-Molekülen, die sich nur durch die Zahl der Thiophenringe unterscheiden, lässt sich im Industriemaßstab außerordentlich kostengünstig herstellen. Allerdings müssen zuvor weitere Aspekte geklärt werden, z.B. die Frage, wie die in dem neuen Material absorbierten hohen Energiemengen am effizientesten in Solarstrom umgesetzt werden.

Erfolgreich mit leistungsstarken Partnern

Die Berechnungen der Lichtabsorptionen sind auch das Ergebnis einer erfolgreichen Zusammenarbeit mit kompetenten Partnern. Auf internationaler Ebene leistete die Arbeitsgruppe von Professor Roi Baer am Fritz Haber-Zentrum für Molekulare Dynamik an der Hebräischen Universität Jerusalem wertvolle Unterstützung. Lokal verstärkt das Graduiertenkolleg 1640 "Fotophysik synthetischer und biologischer multichromophorer Systeme" die Forschungen auf dem Gebiet der organischen Photovoltaik. Es wurde vor kurzem von der Deutschen Forschungsgemeinschaft an der Universität Bayreuth eingerichtet. Zudem macht es die leistungsstarke Infrastruktur im Rechenzentrum der Universität Bayreuth möglich, komplexe Berechnungen in vergleichsweise kurzer Zeit durchzuführen. "Die Kooperation mit unserem Rechenzentrum, das einen von der DFG geförderten High-Performance-Computing-Cluster beherbergt, ist ausgezeichnet. Sie bedeutet eine ganz wichtige Unterstützung für unsere physikalische Grundlagenforschung", freut sich Professor Stephan Kümmel.

Sein Mitarbeiter Dipl.-Phys. Andreas Karolewski war 2009 ausgewählt worden, um eigene Forschungsideen bei der Jahrestagung der Nobelpreisträger in Lindau vorzustellen. Derzeit promoviert er in Bayreuth mit einem Stipendium des Graduiertenkollegs 1640 in der BayNAT, der Bayreuther Graduiertenschule für Mathematik und Naturwissenschaften.

Veröffentlichung

A. Karolewski, T. Stein, R. Baer, S. Kümmel,
Communication: Tailoring the optical gap in light-harvesting molecules,
in: Journal of Chemical Physics, 134 151101-151104 (2011),
DOI-Bookmark: 10.1063/1.3581788
Ansprechpartner
Für die Computersimulationen und physikalischen Berechnungen:
Prof. Dr. Stephan Kümmel
Theoretische Physik IV
Universität Bayreuth
D-95440 Bayreuth
Tel.: +49 (0)921 / 55-3220
E-Mail: stephan.kuemmel@uni-bayreuth.de
Für das EU-Projekt LARGECELLS:
Prof. Dr. Mukundan Thelakkat
Angewandte Funktionspolymere
Universität Bayreuth
D-95440 Bayreuth
Tel.: +49 (0)921 / 55-3108
E-Mail: mukundan.thelakkat@uni-bayreuth.de

Christian Wißler | idw
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher studieren molekulare Konversion auf einer Zeitskala von wenigen Femtosekunden
19.10.2017 | Forschungsverbund Berlin e.V.

nachricht Gravitationswellen: Sternenglanz für Jenaer Forscher
19.10.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Aufräumen? Nicht ohne Helfer

19.10.2017 | Biowissenschaften Chemie

Neue Biotinte für den Druck gewebeähnlicher Strukturen

19.10.2017 | Materialwissenschaften

Forscher studieren molekulare Konversion auf einer Zeitskala von wenigen Femtosekunden

19.10.2017 | Physik Astronomie