Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf dem Weg zum Quantencomputer: Forscherteam mit RUB-Beteiligung erzeugt fliegende Quantenbits

19.03.2012
So wächst das Alphabet der Datenverarbeitung

Das Alphabet der Datenverarbeitung könnte in Zukunft mehr Elemente als die „0“ und „1“ umfassen. Ein internationales Forscherteam hat mit einzelnen Elektronen eine neue Art von Bits realisiert, die so genannten Quantenbits. Mit ihnen lassen sich weitaus mehr als zwei Zustände definieren.


Elektronen-Einbahnstraßen: In diesem Doppelkanal bewegen sich Elektronen (blau) auf definierten, parallelen Wegen. Immer nur ein einzelnes Elektron passt auf einmal hindurch. Durch Tunnelkopplung kann das Elektron zwischen den Kanälen hin- und herwechseln und nimmt dabei zwei verschiedene Zustände ein, die mit „Pfeil nach oben“ und „Pfeil nach unten“ bezeichnet sind. Das Elektron fliegt quasi gleichzeitig in beiden Spuren, seine beiden Zustände überlagern sich. Abbildung: Andreas Wieck

Bislang existierten Quantenbits nur in relativ großen Vakuumkammern, das Team erzeugte sie nun in Halbleitern. So setzten sie einen Effekt in die Tat um, den RUB-Physiker Prof. Dr. Andreas Wieck bereits vor 22 Jahren theoretisch vorhergesagt hatte. Damit ist ein weiterer Schritt auf dem Weg zum Quantencomputer getan. Gemeinsam mit Kollegen aus Grenoble und Tokyo berichtet Wieck vom Lehrstuhl für Angewandte Festkörperphysik über die Ergebnisse in der Zeitschrift Nature Nanotechnology.

Herkömmliche Bits

Die Grundeinheit der heutigen Datenverarbeitung sind die Bit-Zustände „0“ und „1“, die sich in ihrer elektrischen Spannung unterscheiden. Um diese Zustände zu codieren, ist nur die Ladung der Elektronen entscheidend. „Elektronen haben aber auch noch andere Eigenschaften“, sagt Wieck und genau die braucht man für Quantenbits. „Die Erweiterung von Bits auf Quantenbits kann die Rechenleistung von Computern dramatisch steigern“, so der Physiker.

Die neue Bit-Generation

Ein Quantenbit entspricht einem einzigen Elektron in einem bestimmten Zustand. Gemeinsam mit seinen Kollegen nutzte Wieck die Flugbahnen eines Elektrons durch zwei dicht beieinander liegende Kanäle für die Codierung. Prinzipiell sind zwei verschiedene Zustände möglich: Das Elektron bewegt sich entweder im oberen Kanal oder im unteren Kanal – das wäre dann aber wieder nur ein binäres System. Laut Quantentheorie kann sich ein Teilchen jedoch gleichzeitig in mehreren Zuständen befinden, also quasi zur selben Zeit durch beide Kanäle fliegen. Diese überlagerten Zustände können ein umfangreiches Alphabet der Datenverarbeitung bilden.

Ein Rezept für Quantenbits

Um Quantenbits mit unterschiedlichen Zuständen zu erzeugen, ließen die Forscher einzelne Elektronen mit sich selbst interferieren. Das funktioniert mit dem so genannten Aharonov-Bohm-Effekt: Angetrieben von einer äußeren Spannung fliegen die Elektronen durch einen halbleitenden Festkörper. Innerhalb dieses Festkörpers wird ihre Flugbahn erst gegabelt und schließlich wieder zusammengeführt. Dabei fliegt jedes Elektron gleichzeitig auf beiden möglichen Wegen. Vereinen sich die beiden Wege wieder, kommt es zur Interferenz, das heißt die beiden Elektronenwellen überlagern sich und es entstehen Quantenbits mit verschiedenen überlagerten Zuständen.

Elektronen auf definierte Wege lenken

Normalerweise bewegt sich eine Elektronenwelle gleichzeitig auf vielen verschiedenen Pfaden durch einen Festkörper. Durch Verunreinigungen im Material verliert sie ihre Phaseninformation und somit ihre Fähigkeit, einen bestimmten Zustand zu codieren. Um die Phaseninformation zu erhalten, züchteten die Forscher an der RUB einen hochreinen Galliumarsenid-Kristall und nutzten den von Wieck vor über 20 Jahren vorgeschlagenen Doppelkanal.

So funktioniert der Doppelkanal

Ein Elektron erreicht die Weggabelung über zwei dicht beieinander liegende Kanäle. Diese sind miteinander gekoppelt (Tunnelkopplung), so dass das Elektron gleichzeitig auf zwei verschiedenen Pfaden fliegt. Die Phasen der Elektronenwellen bleiben durch die Kopplung erhalten. Den gleichen Doppelkanal verwendete das Team auch, nachdem die Elektronenwellen sich am Ende der Weggabelung wieder vereinten. So erzeugten sie Quantenbits mit eindeutigen Zuständen, die sich eignen, um Information zu codieren. „Leider nehmen noch nicht alle Elektronen an diesem Prozess teil, bislang nur ein paar Prozent“, kommentiert Wieck. „Einige Doktoranden an meinem Lehrstuhl sind aber schon dabei, Kristalle mit höheren Elektronendichten wachsen zu lassen.“

Titelaufnahme

M. Yamamoto, S. Takada, C. Bäuerle, K. Watanabe, A.D. Wieck, S. Tarucha (2012): Electrical control of a solid-state flying qubit, Nature Nanotechnology, doi:10.1038/nnano.2012.28

Weitere Informationen

Prof. Dr. Andreas Wieck, Lehrstuhl für Angewandte Festkörperphysik, Fakultät für Physik und Astronomie der Ruhr-Universität, 44780 Bochum,
Tel.: 0234/32-28786
andreas.wieck@rub.de

Angeklickt

Frühere Presseinformation zum Thema
http://aktuell.ruhr-uni-bochum.de/pm2011/pm00287.html.de

Redaktion
Dr. Julia Weiler

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

nachricht Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
20.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Aufräumen? Nicht ohne Helfer

19.10.2017 | Biowissenschaften Chemie

Neue Biotinte für den Druck gewebeähnlicher Strukturen

19.10.2017 | Materialwissenschaften

Forscher studieren molekulare Konversion auf einer Zeitskala von wenigen Femtosekunden

19.10.2017 | Physik Astronomie