Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf dem Weg zum Quantencomputer: Forscherteam mit RUB-Beteiligung erzeugt fliegende Quantenbits

19.03.2012
So wächst das Alphabet der Datenverarbeitung

Das Alphabet der Datenverarbeitung könnte in Zukunft mehr Elemente als die „0“ und „1“ umfassen. Ein internationales Forscherteam hat mit einzelnen Elektronen eine neue Art von Bits realisiert, die so genannten Quantenbits. Mit ihnen lassen sich weitaus mehr als zwei Zustände definieren.


Elektronen-Einbahnstraßen: In diesem Doppelkanal bewegen sich Elektronen (blau) auf definierten, parallelen Wegen. Immer nur ein einzelnes Elektron passt auf einmal hindurch. Durch Tunnelkopplung kann das Elektron zwischen den Kanälen hin- und herwechseln und nimmt dabei zwei verschiedene Zustände ein, die mit „Pfeil nach oben“ und „Pfeil nach unten“ bezeichnet sind. Das Elektron fliegt quasi gleichzeitig in beiden Spuren, seine beiden Zustände überlagern sich. Abbildung: Andreas Wieck

Bislang existierten Quantenbits nur in relativ großen Vakuumkammern, das Team erzeugte sie nun in Halbleitern. So setzten sie einen Effekt in die Tat um, den RUB-Physiker Prof. Dr. Andreas Wieck bereits vor 22 Jahren theoretisch vorhergesagt hatte. Damit ist ein weiterer Schritt auf dem Weg zum Quantencomputer getan. Gemeinsam mit Kollegen aus Grenoble und Tokyo berichtet Wieck vom Lehrstuhl für Angewandte Festkörperphysik über die Ergebnisse in der Zeitschrift Nature Nanotechnology.

Herkömmliche Bits

Die Grundeinheit der heutigen Datenverarbeitung sind die Bit-Zustände „0“ und „1“, die sich in ihrer elektrischen Spannung unterscheiden. Um diese Zustände zu codieren, ist nur die Ladung der Elektronen entscheidend. „Elektronen haben aber auch noch andere Eigenschaften“, sagt Wieck und genau die braucht man für Quantenbits. „Die Erweiterung von Bits auf Quantenbits kann die Rechenleistung von Computern dramatisch steigern“, so der Physiker.

Die neue Bit-Generation

Ein Quantenbit entspricht einem einzigen Elektron in einem bestimmten Zustand. Gemeinsam mit seinen Kollegen nutzte Wieck die Flugbahnen eines Elektrons durch zwei dicht beieinander liegende Kanäle für die Codierung. Prinzipiell sind zwei verschiedene Zustände möglich: Das Elektron bewegt sich entweder im oberen Kanal oder im unteren Kanal – das wäre dann aber wieder nur ein binäres System. Laut Quantentheorie kann sich ein Teilchen jedoch gleichzeitig in mehreren Zuständen befinden, also quasi zur selben Zeit durch beide Kanäle fliegen. Diese überlagerten Zustände können ein umfangreiches Alphabet der Datenverarbeitung bilden.

Ein Rezept für Quantenbits

Um Quantenbits mit unterschiedlichen Zuständen zu erzeugen, ließen die Forscher einzelne Elektronen mit sich selbst interferieren. Das funktioniert mit dem so genannten Aharonov-Bohm-Effekt: Angetrieben von einer äußeren Spannung fliegen die Elektronen durch einen halbleitenden Festkörper. Innerhalb dieses Festkörpers wird ihre Flugbahn erst gegabelt und schließlich wieder zusammengeführt. Dabei fliegt jedes Elektron gleichzeitig auf beiden möglichen Wegen. Vereinen sich die beiden Wege wieder, kommt es zur Interferenz, das heißt die beiden Elektronenwellen überlagern sich und es entstehen Quantenbits mit verschiedenen überlagerten Zuständen.

Elektronen auf definierte Wege lenken

Normalerweise bewegt sich eine Elektronenwelle gleichzeitig auf vielen verschiedenen Pfaden durch einen Festkörper. Durch Verunreinigungen im Material verliert sie ihre Phaseninformation und somit ihre Fähigkeit, einen bestimmten Zustand zu codieren. Um die Phaseninformation zu erhalten, züchteten die Forscher an der RUB einen hochreinen Galliumarsenid-Kristall und nutzten den von Wieck vor über 20 Jahren vorgeschlagenen Doppelkanal.

So funktioniert der Doppelkanal

Ein Elektron erreicht die Weggabelung über zwei dicht beieinander liegende Kanäle. Diese sind miteinander gekoppelt (Tunnelkopplung), so dass das Elektron gleichzeitig auf zwei verschiedenen Pfaden fliegt. Die Phasen der Elektronenwellen bleiben durch die Kopplung erhalten. Den gleichen Doppelkanal verwendete das Team auch, nachdem die Elektronenwellen sich am Ende der Weggabelung wieder vereinten. So erzeugten sie Quantenbits mit eindeutigen Zuständen, die sich eignen, um Information zu codieren. „Leider nehmen noch nicht alle Elektronen an diesem Prozess teil, bislang nur ein paar Prozent“, kommentiert Wieck. „Einige Doktoranden an meinem Lehrstuhl sind aber schon dabei, Kristalle mit höheren Elektronendichten wachsen zu lassen.“

Titelaufnahme

M. Yamamoto, S. Takada, C. Bäuerle, K. Watanabe, A.D. Wieck, S. Tarucha (2012): Electrical control of a solid-state flying qubit, Nature Nanotechnology, doi:10.1038/nnano.2012.28

Weitere Informationen

Prof. Dr. Andreas Wieck, Lehrstuhl für Angewandte Festkörperphysik, Fakultät für Physik und Astronomie der Ruhr-Universität, 44780 Bochum,
Tel.: 0234/32-28786
andreas.wieck@rub.de

Angeklickt

Frühere Presseinformation zum Thema
http://aktuell.ruhr-uni-bochum.de/pm2011/pm00287.html.de

Redaktion
Dr. Julia Weiler

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie