Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf dem Weg zum Quantencomputer: Forscherteam mit RUB-Beteiligung erzeugt fliegende Quantenbits

19.03.2012
So wächst das Alphabet der Datenverarbeitung

Das Alphabet der Datenverarbeitung könnte in Zukunft mehr Elemente als die „0“ und „1“ umfassen. Ein internationales Forscherteam hat mit einzelnen Elektronen eine neue Art von Bits realisiert, die so genannten Quantenbits. Mit ihnen lassen sich weitaus mehr als zwei Zustände definieren.


Elektronen-Einbahnstraßen: In diesem Doppelkanal bewegen sich Elektronen (blau) auf definierten, parallelen Wegen. Immer nur ein einzelnes Elektron passt auf einmal hindurch. Durch Tunnelkopplung kann das Elektron zwischen den Kanälen hin- und herwechseln und nimmt dabei zwei verschiedene Zustände ein, die mit „Pfeil nach oben“ und „Pfeil nach unten“ bezeichnet sind. Das Elektron fliegt quasi gleichzeitig in beiden Spuren, seine beiden Zustände überlagern sich. Abbildung: Andreas Wieck

Bislang existierten Quantenbits nur in relativ großen Vakuumkammern, das Team erzeugte sie nun in Halbleitern. So setzten sie einen Effekt in die Tat um, den RUB-Physiker Prof. Dr. Andreas Wieck bereits vor 22 Jahren theoretisch vorhergesagt hatte. Damit ist ein weiterer Schritt auf dem Weg zum Quantencomputer getan. Gemeinsam mit Kollegen aus Grenoble und Tokyo berichtet Wieck vom Lehrstuhl für Angewandte Festkörperphysik über die Ergebnisse in der Zeitschrift Nature Nanotechnology.

Herkömmliche Bits

Die Grundeinheit der heutigen Datenverarbeitung sind die Bit-Zustände „0“ und „1“, die sich in ihrer elektrischen Spannung unterscheiden. Um diese Zustände zu codieren, ist nur die Ladung der Elektronen entscheidend. „Elektronen haben aber auch noch andere Eigenschaften“, sagt Wieck und genau die braucht man für Quantenbits. „Die Erweiterung von Bits auf Quantenbits kann die Rechenleistung von Computern dramatisch steigern“, so der Physiker.

Die neue Bit-Generation

Ein Quantenbit entspricht einem einzigen Elektron in einem bestimmten Zustand. Gemeinsam mit seinen Kollegen nutzte Wieck die Flugbahnen eines Elektrons durch zwei dicht beieinander liegende Kanäle für die Codierung. Prinzipiell sind zwei verschiedene Zustände möglich: Das Elektron bewegt sich entweder im oberen Kanal oder im unteren Kanal – das wäre dann aber wieder nur ein binäres System. Laut Quantentheorie kann sich ein Teilchen jedoch gleichzeitig in mehreren Zuständen befinden, also quasi zur selben Zeit durch beide Kanäle fliegen. Diese überlagerten Zustände können ein umfangreiches Alphabet der Datenverarbeitung bilden.

Ein Rezept für Quantenbits

Um Quantenbits mit unterschiedlichen Zuständen zu erzeugen, ließen die Forscher einzelne Elektronen mit sich selbst interferieren. Das funktioniert mit dem so genannten Aharonov-Bohm-Effekt: Angetrieben von einer äußeren Spannung fliegen die Elektronen durch einen halbleitenden Festkörper. Innerhalb dieses Festkörpers wird ihre Flugbahn erst gegabelt und schließlich wieder zusammengeführt. Dabei fliegt jedes Elektron gleichzeitig auf beiden möglichen Wegen. Vereinen sich die beiden Wege wieder, kommt es zur Interferenz, das heißt die beiden Elektronenwellen überlagern sich und es entstehen Quantenbits mit verschiedenen überlagerten Zuständen.

Elektronen auf definierte Wege lenken

Normalerweise bewegt sich eine Elektronenwelle gleichzeitig auf vielen verschiedenen Pfaden durch einen Festkörper. Durch Verunreinigungen im Material verliert sie ihre Phaseninformation und somit ihre Fähigkeit, einen bestimmten Zustand zu codieren. Um die Phaseninformation zu erhalten, züchteten die Forscher an der RUB einen hochreinen Galliumarsenid-Kristall und nutzten den von Wieck vor über 20 Jahren vorgeschlagenen Doppelkanal.

So funktioniert der Doppelkanal

Ein Elektron erreicht die Weggabelung über zwei dicht beieinander liegende Kanäle. Diese sind miteinander gekoppelt (Tunnelkopplung), so dass das Elektron gleichzeitig auf zwei verschiedenen Pfaden fliegt. Die Phasen der Elektronenwellen bleiben durch die Kopplung erhalten. Den gleichen Doppelkanal verwendete das Team auch, nachdem die Elektronenwellen sich am Ende der Weggabelung wieder vereinten. So erzeugten sie Quantenbits mit eindeutigen Zuständen, die sich eignen, um Information zu codieren. „Leider nehmen noch nicht alle Elektronen an diesem Prozess teil, bislang nur ein paar Prozent“, kommentiert Wieck. „Einige Doktoranden an meinem Lehrstuhl sind aber schon dabei, Kristalle mit höheren Elektronendichten wachsen zu lassen.“

Titelaufnahme

M. Yamamoto, S. Takada, C. Bäuerle, K. Watanabe, A.D. Wieck, S. Tarucha (2012): Electrical control of a solid-state flying qubit, Nature Nanotechnology, doi:10.1038/nnano.2012.28

Weitere Informationen

Prof. Dr. Andreas Wieck, Lehrstuhl für Angewandte Festkörperphysik, Fakultät für Physik und Astronomie der Ruhr-Universität, 44780 Bochum,
Tel.: 0234/32-28786
andreas.wieck@rub.de

Angeklickt

Frühere Presseinformation zum Thema
http://aktuell.ruhr-uni-bochum.de/pm2011/pm00287.html.de

Redaktion
Dr. Julia Weiler

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen