Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf dem Weg zur Entdeckung neuer langlebiger Elemente

11.02.2010
Erstmalig Einsatz von "Ionen-Fallen" zur Untersuchung von schwersten Elementen

Neben den auf der Erde natürlich vorkommenden 92 Elementen ist es Wissenschaftlern gelungen, noch über 20 weitere chemische Elemente zu entdecken. Sechs davon wurden beim GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt entdeckt. Sie konnten künstlich an Teilchenbeschleunigern hergestellt werden.

Die künstlichen Elemente sind alle sehr kurzlebig, das heißt sie zerfallen nach Bruchteilen von Sekunden. Wissenschaftler sagen jedoch noch schwerere Elemente voraus, die sehr langlebig sind, das heißt möglicherweise erst nach mehreren Jahren zerfallen. Sie werden als Insel der Stabilität bezeichnet. Am GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt haben Wissenschaftler nun eine Messapparatur entwickelt und aufgebaut, mit der die Entdeckung solcher langlebiger Elemente erstmals möglich werden könnte. Dies berichtet die renommierte naturwissenschaftliche Fachzeitschrift Nature.

Einem internationalen Team von Wissenschaftlern um Michael Block gelang es, Atome des Elements 102, Nobelium, und damit erstmals überhaupt ein so genanntes superschweres Element in einer Ionen-Falle einzufangen. Dadurch konnten sie die Masse von Nobelium-Atomen mit nie dagewesener Genauigkeit messen. Die Masse ist eine grundlegende Eigenschaft von Atomen, aus der sich unmittelbar die Bindungsenergie, die das Atom zusammenhält, berechnen lässt. Daraus wiederum lässt sich seine Lebensdauer bzw. Stabilität ermitteln. Der eigentliche Zerfall muss nicht wie bei früheren Methoden abgewartet werden. Deshalb können in einer Ionen-Falle Elemente mit extrem langen Lebensdauern nachgewiesen werden. Auf längere Sicht erhoffen sich die Wissenschaftler bis zur Insel der Stabilität, die im Bereich um die Elemente 114 bis 120 vermutet wird, vorzudringen.

"Die präzise Messung der Masse von Nobelium mit unserem neuen Messaufbau Shiptrap war ein erster erfolgreicher Schritt. Unser Ziel ist es nun, den Messaufbau weiter zu verfeinern, sodass wir zu immer schwereren Elementen vorstoßen können, um vielleicht eines Tages die Insel der Stabilität zu erreichen", sagt Michael Block, der Leiter der Experimentiergruppe am GSI Helmholtzzentrum.

Für seine Messungen baute das Team um Michael Block eine komplexe Apparatur, die Ionen-Falle Shiptrap, auf und kombinierte sie mit dem Geschwindigkeitsfilter Ship, mit dem bei GSI bereits sechs kurzlebige Elemente entdeckt werden konnten. Das Nobelium erzeugten sie, indem sie eine Blei-Folie mit Kalzium-Ionen aus dem GSI-Beschleuniger beschossen. Danach trennten sie das erzeugte Nobelium mit Ship von anderen Reaktionsprodukten ab. In der Shiptrap-Apparatur wurde das Nobelium zuerst in einer mit Gas gefüllten Zelle abgebremst und anschließend in einer so genannten Penning-Falle als Ion eingefangen. Durch Magnetfelder in der Falle gehalten, kreiste das Nobelium-Ion auf einer winzigen Spiralbahn mit einer bestimmten Frequenz, aus der sich direkt die Masse berechnen ließ. Die Massenbestimmung war bis auf fünf Millionstel Prozent genau. Die Masse und damit die Bindungsenergie kann somit viel genauer als bisher und erstmals direkt, also ohne Zuhilfenahme von theoretischen Annahmen, bestimmt werden.

An den Experimenten beteiligt waren neben GSI das Max-Planck-Institut für Kernphysik Heidelberg, die Universitäten Gießen, Greifswald, Heidelberg, Mainz, München, Padua (Italien), Jyväskylä (Finnland) und Granada (Spanien) sowie das PNPI (Petersburg Nuclear Physics Institute) und das JINR (Joint Institute for Nuclear Research) in Russland.

Dr. Ingo Peter | idw
Weitere Informationen:
http://www.nature.com/nature/journal/v463/n7282/full/nature08774.html
http://www.nature.com/nature/journal/v463/n7282/full/463740a.html
http://www.gsi.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie