Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weder fest noch flüssig: Granulare Materie im Visier der Experimentalphysik

30.11.2010
„Materie ist fest oder flüssig oder gasförmig“, heißt es gelegentlich im Physik- oder Chemieunterricht, wenn von den drei Aggregatzuständen die Rede ist. Alltägliche Erfahrungen scheinen diese Vorstellung zu bestätigen – beispielsweise wenn Eis taut oder Wasser verdampft.

Doch es gibt eine Art von Materie, die sich dieser gängigen Einteilung entzieht: Granulare Materie. Dabei handelt es sich um eine Substanz, die aus festen Partikeln zusammengesetzt ist. Die Größe der Partikel bewegt sich in der Regel in einer Größenordnung zwischen wenigen Mikrometern und wenigen Zentimetern.

Typische Beispiele in der Natur sind Sandhaufen, Staubwolken, Dünen oder Lawinen, aber auch Industrieprodukte wie Kies, Zement, Streusalz, Zucker oder Waschpulver. Innerhalb derartiger Mengen werden Bewegungen von einem Partikel zu einem benachbarten Partikel in einer Weise übertragen, die für granulare Materie charakteristisch ist: Die Energie wird nicht allein als gerichtete Bewegungsenergie weitergegeben, sondern zu einem sehr hohen Anteil in Reibungswärme umgewandelt. Die Forschung bezeichnet granulare Materie deshalb als „dissipatives System“.

Modellierungen granularer Materie: Eine Herausforderung für die physikalische Forschung

Innerhalb granularer Materie hat jeder einzelne Partikel viele Möglichkeiten, mit benachbarten Partikeln in Wechselwirkung zu treten. Daher sind die Eigenschaften und Verhaltensweisen beispielsweise von Sand- oder Kieshaufen wandlungsfähig und vielfältig. Derartige Mengen können sich wie Festkörper verhalten, aber auch wie Flüssigkeiten – je nachdem, auf welchen Wegen Bewegungsenergie und Wärme sich darin ausbreiten. Sogar ein gasähnliches Verhalten lässt sich, beispielsweise in den Wolken eines Sandsturms, beobachten. In allen diesen Fällen handelt es sich nicht um Aggregatzustände wie bei Eis, Wasser oder Dampf, sondern um feste, flüssige oder gasförmige Erscheinungsformen einer dichten Menge fester Partikel.

Die Eigenschaften und Verhaltensweisen granularer Materie zu berechnen und in physikalischen Modellen abzubilden, ist eine wissenschaftliche Herausforderung, an der heute weltweit gearbeitet wird. An der Universität Bayreuth befasst sich Prof. Dr. Ingo Rehberg, Inhaber des Lehrstuhls für Experimentalphysik V, schon seit vielen Jahren mit dieser Thematik. In der aktuellen Ausgabe der „Zeitschrift für Angewandte Mathematik und Mechanik“ berichten er und weitere Mitglieder seines Forschungsteams über neuere Forschungen. Diese zielen insbesondere auf ein besseres Verständnis der Prozesse ab, die sich beim Übergang von einem festförmigen in einen flüssigartigen Zustand innerhalb granularer Materie abspielen.

Von der Kamera beobachtet: Granulare Partikel auf dem Schwenktisch und im Schwingförderer

Im Mittelpunkt der Untersuchungen in den Bayreuther Laboratorien stehen zwei experimentelle Systeme: ein Schwenktisch („swirling table“) und ein Schwingförderer („vibratory conveyor“). Der Schwenktisch ist eine Apparatur, bei der kleine Glaskugeln sich auf der ebenen Oberfläche einer Schale befinden. Diese Schale wird, ohne dass sie sich um den eigenen Mittelpunkt dreht, in eine horizontale Rotation versetzt. Eine Besonderheit der Versuchsanordnung besteht darin, dass alle Punkte auf der Schale exakt die gleichen Bewegungen vollziehen. Dadurch ist sichergestellt, dass jeder Kugel die gleiche kinetische Energie mitgeteilt wird, wenn sie entweder mit einer anderen Kugel oder mit dem Rand der Schale zusammenstößt. Die konstante Energiezufuhr durch die kreisförmigen Rotationsbewegungen bewirkt, dass die Kugeln in Vibration geraten und sich von einem kritischen Punkt an nicht mehr wie eine feste, sondern wie eine flüssige Materie verhalten. Eine über der Schale befestigte Hochgeschindigkeitskamera verfolgt die Bewegungen der Glaskugeln. Sie erzeugt 500 Aufnahmen pro Sekunde und liefert dadurch präzise Informationen über signifikante Änderungen im Verhalten dieser „Partikel“. Dazu zählen insbesondere Änderungen in der Weise, in der sich die Kugeln fortbewegen. Bei geringer Anzahl formen sie eine Schlange, die sich am Rand der Schale parallel zu den Rotationen des Schwenktisches vorwärts bewegt. Werden weitere Kugeln hinzugefügt, bilden sich Cluster; die Bewegung verlangsamt sich, ändert aber nicht ihre Richtung. Falls aber die Dichte dieser Cluster durch zusätzliche Kugeln weiter zunimmt, wird ein kritischer Punkt erreicht, an dem die Bewegungsrichtung umschlägt: Die Cluster geraten dann plötzlich in eine Bewegung, die gegenläufig zu den Rotationen des Schwenktisches verläuft und von den Forschern als „Reptation“ bezeichnet wird.

Alle drei Bewegungsmuster der Glaskugeln unterscheiden sich – wie das Forschungsteam um Rehberg zeigen konnte – auffällig von dem Verhalten, das feuchte Partikel auf dem Schwenktisch zeigen. Werden beispielsweise feuchte Sandkörner in dauernde Vibrationen versetzt, bilden sich zwischen benachbarten Körnern winzige Kapillarbrücken, die zu Verklumpungen führen und die Bewegungen verlangsamen. Der Übergang vom festförmigen zum flüssigartigen Zustand gestaltet sich deutlich anders, als wenn die Partikel trocken sind.

Im Unterschied zum Schwenktisch ermöglicht es der Schwingförderer, granulare Materie in Vibrationsbewegungen zu versetzen, die zeitgleich horizontal und vertikal verlaufen.

Es handelt sich dabei um eine reifenartige Apparatur, in deren kreisrundem Innenraum die Partikel durchgeschüttelt werden. Auch hier bietet eine Hochgeschwindigkeitskamera überraschende Einblicke in das Bewegungsverhalten. Bisweilen führen die Dauervibrationen dazu, dass die Glaskugeln, Sandkörner oder andere Partikel sich in auffälligen dreidimensionalen Mustern zusammenfinden.

Anwendungspotenziale in der Industrie

Die Ergebnisse dieser experimentellen Grundlagenforschung sind hochrelevant für die Industrie – insbesondere für Unternehmen, die Schüttgut wie Kies, Sand oder Streusalz herstellen, verpacken oder ausliefern. Denn die gewonnenen Informationen können dazu beitragen, den Transport dieser Güter mit einem geringen Energieaufwand und somit kostengünstig durchzuführen.

„Derzeit sind wir von physikalischen Modellen, die das Verhalten granularer Materie exakt beschreiben und zuverlässige Prognosen ermöglichen, noch weit entfernt“, erklärt Prof. Dr. Ingo Rehberg. „Aber unsere bisherigen Untersuchungen bestärken uns in der Auffassung, dass Phasenübergänge vielversprechende Ansatzpunkte für eine Modellierung darstellen. Solche Phasenübergänge sind zum Beispiel die Veränderungen in der Bewegungsrichtung oder der Wechsel zwischen Zuständen, die den Aggregatzuständen ‚fest’, ‚flüssig’ und ‚gasförmig’ gleichen. In unserer Bayreuther Forschergruppe ‚Nichtlineare Dynamik komplexer Kontinua’, die von der Deutschen Forschungsgemeinschaft gefördert wird, wollen wir diese Untersuchungen weiter vorantreiben.“

Veröffentlichung:
Kai Huang, Christoph Krülle and Ingo Rehberg,
Snooping in the Sand,
in: ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für
Angewandte Mathematik und Mechanik (2010) 90, No. 12, pp. 911 – 919
DOI-Bookmark: 10.1002/zamm.201090016
Kontaktadresse für weitere Informationen:
Prof. Dr. Ingo Rehberg
Lehrstuhl Experimentalphysik V
Universität Bayreuth
95440 Bayreuth
Tel.: 0921 / 55-3343 und -3344
E-Mail: ingo.rehberg@uni-bayreuth.det

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de
http://www.uni-bayreuth.de/blick-in-die-forschung/35-2010-Bilder/
http://www.uni-bayreuth.de/blick-in-die-forschung/35-2010-Videos/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Sterngeburt in den Winden supermassereicher Schwarzer Löcher
28.03.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Das anwachsende Ende der Ordnung
27.03.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit