Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weder fest noch flüssig: Granulare Materie im Visier der Experimentalphysik

30.11.2010
„Materie ist fest oder flüssig oder gasförmig“, heißt es gelegentlich im Physik- oder Chemieunterricht, wenn von den drei Aggregatzuständen die Rede ist. Alltägliche Erfahrungen scheinen diese Vorstellung zu bestätigen – beispielsweise wenn Eis taut oder Wasser verdampft.

Doch es gibt eine Art von Materie, die sich dieser gängigen Einteilung entzieht: Granulare Materie. Dabei handelt es sich um eine Substanz, die aus festen Partikeln zusammengesetzt ist. Die Größe der Partikel bewegt sich in der Regel in einer Größenordnung zwischen wenigen Mikrometern und wenigen Zentimetern.

Typische Beispiele in der Natur sind Sandhaufen, Staubwolken, Dünen oder Lawinen, aber auch Industrieprodukte wie Kies, Zement, Streusalz, Zucker oder Waschpulver. Innerhalb derartiger Mengen werden Bewegungen von einem Partikel zu einem benachbarten Partikel in einer Weise übertragen, die für granulare Materie charakteristisch ist: Die Energie wird nicht allein als gerichtete Bewegungsenergie weitergegeben, sondern zu einem sehr hohen Anteil in Reibungswärme umgewandelt. Die Forschung bezeichnet granulare Materie deshalb als „dissipatives System“.

Modellierungen granularer Materie: Eine Herausforderung für die physikalische Forschung

Innerhalb granularer Materie hat jeder einzelne Partikel viele Möglichkeiten, mit benachbarten Partikeln in Wechselwirkung zu treten. Daher sind die Eigenschaften und Verhaltensweisen beispielsweise von Sand- oder Kieshaufen wandlungsfähig und vielfältig. Derartige Mengen können sich wie Festkörper verhalten, aber auch wie Flüssigkeiten – je nachdem, auf welchen Wegen Bewegungsenergie und Wärme sich darin ausbreiten. Sogar ein gasähnliches Verhalten lässt sich, beispielsweise in den Wolken eines Sandsturms, beobachten. In allen diesen Fällen handelt es sich nicht um Aggregatzustände wie bei Eis, Wasser oder Dampf, sondern um feste, flüssige oder gasförmige Erscheinungsformen einer dichten Menge fester Partikel.

Die Eigenschaften und Verhaltensweisen granularer Materie zu berechnen und in physikalischen Modellen abzubilden, ist eine wissenschaftliche Herausforderung, an der heute weltweit gearbeitet wird. An der Universität Bayreuth befasst sich Prof. Dr. Ingo Rehberg, Inhaber des Lehrstuhls für Experimentalphysik V, schon seit vielen Jahren mit dieser Thematik. In der aktuellen Ausgabe der „Zeitschrift für Angewandte Mathematik und Mechanik“ berichten er und weitere Mitglieder seines Forschungsteams über neuere Forschungen. Diese zielen insbesondere auf ein besseres Verständnis der Prozesse ab, die sich beim Übergang von einem festförmigen in einen flüssigartigen Zustand innerhalb granularer Materie abspielen.

Von der Kamera beobachtet: Granulare Partikel auf dem Schwenktisch und im Schwingförderer

Im Mittelpunkt der Untersuchungen in den Bayreuther Laboratorien stehen zwei experimentelle Systeme: ein Schwenktisch („swirling table“) und ein Schwingförderer („vibratory conveyor“). Der Schwenktisch ist eine Apparatur, bei der kleine Glaskugeln sich auf der ebenen Oberfläche einer Schale befinden. Diese Schale wird, ohne dass sie sich um den eigenen Mittelpunkt dreht, in eine horizontale Rotation versetzt. Eine Besonderheit der Versuchsanordnung besteht darin, dass alle Punkte auf der Schale exakt die gleichen Bewegungen vollziehen. Dadurch ist sichergestellt, dass jeder Kugel die gleiche kinetische Energie mitgeteilt wird, wenn sie entweder mit einer anderen Kugel oder mit dem Rand der Schale zusammenstößt. Die konstante Energiezufuhr durch die kreisförmigen Rotationsbewegungen bewirkt, dass die Kugeln in Vibration geraten und sich von einem kritischen Punkt an nicht mehr wie eine feste, sondern wie eine flüssige Materie verhalten. Eine über der Schale befestigte Hochgeschindigkeitskamera verfolgt die Bewegungen der Glaskugeln. Sie erzeugt 500 Aufnahmen pro Sekunde und liefert dadurch präzise Informationen über signifikante Änderungen im Verhalten dieser „Partikel“. Dazu zählen insbesondere Änderungen in der Weise, in der sich die Kugeln fortbewegen. Bei geringer Anzahl formen sie eine Schlange, die sich am Rand der Schale parallel zu den Rotationen des Schwenktisches vorwärts bewegt. Werden weitere Kugeln hinzugefügt, bilden sich Cluster; die Bewegung verlangsamt sich, ändert aber nicht ihre Richtung. Falls aber die Dichte dieser Cluster durch zusätzliche Kugeln weiter zunimmt, wird ein kritischer Punkt erreicht, an dem die Bewegungsrichtung umschlägt: Die Cluster geraten dann plötzlich in eine Bewegung, die gegenläufig zu den Rotationen des Schwenktisches verläuft und von den Forschern als „Reptation“ bezeichnet wird.

Alle drei Bewegungsmuster der Glaskugeln unterscheiden sich – wie das Forschungsteam um Rehberg zeigen konnte – auffällig von dem Verhalten, das feuchte Partikel auf dem Schwenktisch zeigen. Werden beispielsweise feuchte Sandkörner in dauernde Vibrationen versetzt, bilden sich zwischen benachbarten Körnern winzige Kapillarbrücken, die zu Verklumpungen führen und die Bewegungen verlangsamen. Der Übergang vom festförmigen zum flüssigartigen Zustand gestaltet sich deutlich anders, als wenn die Partikel trocken sind.

Im Unterschied zum Schwenktisch ermöglicht es der Schwingförderer, granulare Materie in Vibrationsbewegungen zu versetzen, die zeitgleich horizontal und vertikal verlaufen.

Es handelt sich dabei um eine reifenartige Apparatur, in deren kreisrundem Innenraum die Partikel durchgeschüttelt werden. Auch hier bietet eine Hochgeschwindigkeitskamera überraschende Einblicke in das Bewegungsverhalten. Bisweilen führen die Dauervibrationen dazu, dass die Glaskugeln, Sandkörner oder andere Partikel sich in auffälligen dreidimensionalen Mustern zusammenfinden.

Anwendungspotenziale in der Industrie

Die Ergebnisse dieser experimentellen Grundlagenforschung sind hochrelevant für die Industrie – insbesondere für Unternehmen, die Schüttgut wie Kies, Sand oder Streusalz herstellen, verpacken oder ausliefern. Denn die gewonnenen Informationen können dazu beitragen, den Transport dieser Güter mit einem geringen Energieaufwand und somit kostengünstig durchzuführen.

„Derzeit sind wir von physikalischen Modellen, die das Verhalten granularer Materie exakt beschreiben und zuverlässige Prognosen ermöglichen, noch weit entfernt“, erklärt Prof. Dr. Ingo Rehberg. „Aber unsere bisherigen Untersuchungen bestärken uns in der Auffassung, dass Phasenübergänge vielversprechende Ansatzpunkte für eine Modellierung darstellen. Solche Phasenübergänge sind zum Beispiel die Veränderungen in der Bewegungsrichtung oder der Wechsel zwischen Zuständen, die den Aggregatzuständen ‚fest’, ‚flüssig’ und ‚gasförmig’ gleichen. In unserer Bayreuther Forschergruppe ‚Nichtlineare Dynamik komplexer Kontinua’, die von der Deutschen Forschungsgemeinschaft gefördert wird, wollen wir diese Untersuchungen weiter vorantreiben.“

Veröffentlichung:
Kai Huang, Christoph Krülle and Ingo Rehberg,
Snooping in the Sand,
in: ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für
Angewandte Mathematik und Mechanik (2010) 90, No. 12, pp. 911 – 919
DOI-Bookmark: 10.1002/zamm.201090016
Kontaktadresse für weitere Informationen:
Prof. Dr. Ingo Rehberg
Lehrstuhl Experimentalphysik V
Universität Bayreuth
95440 Bayreuth
Tel.: 0921 / 55-3343 und -3344
E-Mail: ingo.rehberg@uni-bayreuth.det

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de
http://www.uni-bayreuth.de/blick-in-die-forschung/35-2010-Bilder/
http://www.uni-bayreuth.de/blick-in-die-forschung/35-2010-Videos/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau
17.11.2017 | Universität Ulm

nachricht Zwei verdächtigte Sterne unschuldig an mysteriösem Antiteilchen-Überschuss
17.11.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte