Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wechselwirkung von Licht und Materie - Ein perfektes Attosekunden-Experiment

16.06.2017

Mit einem sogenannten Attosekunden-Experiment ist es Physikern der Waseda-Universität in Japan, des National Research Council in Kanada und des Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) in Berlin gelungen, die Wellenfunktion eines ionisierten Elektrons komplett zu messen und zu beschreiben. Dieser Grad an Perfektion, den das Experiment erreicht, ist in diesem Forschungsbereich bislang einmalig. Die Ergebnisse sind jetzt in „Science“ erschienen.

Neuartige Experimente, die ultraschnelle Licht-Blitze einsetzen, revolutionieren derzeit die Laserforschung in der Physik. Sie liefern beispiellose Einblicke in die Materie – in die Struktur und Dynamik von Elektronen in Atomen, Molekülen und in kondensierten Phasen.


Nachweis der Form einer elektronischen Wellenfunktion mit einer sechsfachen Symmetrie

NRC Ottawa


Wellenfunktion eines ionisierten Elektrons

MBI Berlin

Mit einem sogenannten Attosekunden-Experiment ist es jetzt Physikern der Waseda-Universität in Japan, des National Research Council in Kanada und des Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) in Berlin gelungen, die Wellenfunktion eines ionisierten Elektrons komplett zu messen und zu beschreiben. Dieser Grad an Perfektion, den das Experiment erreicht, ist in diesem Forschungsbereich bislang einmalig. Die Ergebnisse sind jetzt in „Science“ erschienen.

Eine Attosekunde ist ein Millardstel einer Millardstel Sekunde. Sie verhält sich zu einer Sekunde wie eine Sekunde zum Alter des Universums. Attosekunden-Lichtimpulse ermöglichen es, die Zustände der Materie umfassend zu verändern. Elektronen werden durch die Laser-Blitze angeregt. Sie weisen dann ein höheres Energieniveau auf und nehmen eine neue Bahn, ein neues Orbital, ein.

Verschiedene Orbitale – oder: verschiedene Zustände des Elektrons – können hierbei beschrieben werden. Hierzu werden Quantenzahlen für die Energie, den Bahndrehimpuls sowie den Eigendrehimpuls genutzt. Wenn die Energie, die von dem Attosekundenpuls auf das Atom übertragen wird, hoch genug ist, kann das Elektron sogar ionisieren. Dies bedeutet, dass es das Atom verlässt und wegfliegt, zum Beispiel zu einem Detektor.

In dem Experiment gelang es den Wissenschaftlern, die Quantenzahlen eines freigesetzten Elektrons – oder auch: die Wellenfunktion eines freigesetzten Elektrons – komplett zu messen und mathematisch zu beschreiben. Daher spricht man auch von einem perfekten Attosekunden-Experiment.

„Die Attosekunden-Forschung ist noch sehr jung“, erklärt Prof. Dr. Marc Vrakking, Direktor am MBI und Mitautor der Publikation. „Erst durch die modernste Laser-Forschung haben wir die Möglichkeit, solche neuartigen Experimente mit ultrakurzen Lichtimpulsen durchzuführen und so umfassend die hierdurch verursachten Veränderungen in der Materie zu messen. Unsere Ergebnisse liefern einen wichtigen Beitrag für die Grundlagenforschung zur Quantenphysik.“

Elektronen sind Elementarteilchen, die Elektrizität erst möglich machen. Die Ionisation ist beispielsweise die Grundlage für Solarzellen. Das Sonnenlicht löst Elektronen aus dem Silizium heraus und setzt hierdurch einen Stromfluss in Gang. Im Experiment werden Laser-Blitze eingesetzt, um Elektronen freizusetzen und die hierdurch veränderten Materiezustände zu messen sowie zu beschreiben. Laser sind jedoch auch unverzichtbare Werkzeuge beim Speichern und Übertragen von Information, in der Messtechnik, in der medizinischen Diagnostik und in der modernen Fertigungstechnik vom Schiffs- und Flugzeugbau bis hin zum Computerchip.

Publikation:
Coherent imaging of an attosecond electron wave packet
D. M. Villeneuve, Paul Hockett, M. J. J. Vrakking, Hiromichi Niikura
Science. 2017, Vol. 356, Issue 6343, doi: http://science.sciencemag.org/cgi/doi/10.1126/science.aam8393 (Link freigeschaltet nach Sperrfrist)

Bildmaterial sowie eine Zusammenfassung der Forschungsergebnisse (in Englisch) finden Sie im Anhang.

Bildunterschrift (18-1115_AttoSecPressR_NRC Ottawa to be credited.jpg): Künstlerdarstellung eines Experiments: Die Sequenz von zwei Laserfeldern interagiert mit den Elektronen, die in einem Atom zirkulieren. Das Ergebnis ist der Nachweis der Form einer elektronischen Wellenfunktion mit einer sechsfachen Symmetrie. Quelle: NRC Ottawa

Kontakt:
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI)
Prof. Dr. Marc Vrakking
Tel. 030 / 6392-1200
E-Mail marc.vrakking@mbi-berlin.de

Weitere Informationen:

http://science.sciencemag.org/cgi/doi/10.1126/science.aam8393

Anja Wirsing | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau
17.11.2017 | Universität Ulm

nachricht Zwei verdächtigte Sterne unschuldig an mysteriösem Antiteilchen-Überschuss
17.11.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte