Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wechselwirkung von Licht und Materie - Ein perfektes Attosekunden-Experiment

16.06.2017

Mit einem sogenannten Attosekunden-Experiment ist es Physikern der Waseda-Universität in Japan, des National Research Council in Kanada und des Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) in Berlin gelungen, die Wellenfunktion eines ionisierten Elektrons komplett zu messen und zu beschreiben. Dieser Grad an Perfektion, den das Experiment erreicht, ist in diesem Forschungsbereich bislang einmalig. Die Ergebnisse sind jetzt in „Science“ erschienen.

Neuartige Experimente, die ultraschnelle Licht-Blitze einsetzen, revolutionieren derzeit die Laserforschung in der Physik. Sie liefern beispiellose Einblicke in die Materie – in die Struktur und Dynamik von Elektronen in Atomen, Molekülen und in kondensierten Phasen.


Nachweis der Form einer elektronischen Wellenfunktion mit einer sechsfachen Symmetrie

NRC Ottawa


Wellenfunktion eines ionisierten Elektrons

MBI Berlin

Mit einem sogenannten Attosekunden-Experiment ist es jetzt Physikern der Waseda-Universität in Japan, des National Research Council in Kanada und des Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) in Berlin gelungen, die Wellenfunktion eines ionisierten Elektrons komplett zu messen und zu beschreiben. Dieser Grad an Perfektion, den das Experiment erreicht, ist in diesem Forschungsbereich bislang einmalig. Die Ergebnisse sind jetzt in „Science“ erschienen.

Eine Attosekunde ist ein Millardstel einer Millardstel Sekunde. Sie verhält sich zu einer Sekunde wie eine Sekunde zum Alter des Universums. Attosekunden-Lichtimpulse ermöglichen es, die Zustände der Materie umfassend zu verändern. Elektronen werden durch die Laser-Blitze angeregt. Sie weisen dann ein höheres Energieniveau auf und nehmen eine neue Bahn, ein neues Orbital, ein.

Verschiedene Orbitale – oder: verschiedene Zustände des Elektrons – können hierbei beschrieben werden. Hierzu werden Quantenzahlen für die Energie, den Bahndrehimpuls sowie den Eigendrehimpuls genutzt. Wenn die Energie, die von dem Attosekundenpuls auf das Atom übertragen wird, hoch genug ist, kann das Elektron sogar ionisieren. Dies bedeutet, dass es das Atom verlässt und wegfliegt, zum Beispiel zu einem Detektor.

In dem Experiment gelang es den Wissenschaftlern, die Quantenzahlen eines freigesetzten Elektrons – oder auch: die Wellenfunktion eines freigesetzten Elektrons – komplett zu messen und mathematisch zu beschreiben. Daher spricht man auch von einem perfekten Attosekunden-Experiment.

„Die Attosekunden-Forschung ist noch sehr jung“, erklärt Prof. Dr. Marc Vrakking, Direktor am MBI und Mitautor der Publikation. „Erst durch die modernste Laser-Forschung haben wir die Möglichkeit, solche neuartigen Experimente mit ultrakurzen Lichtimpulsen durchzuführen und so umfassend die hierdurch verursachten Veränderungen in der Materie zu messen. Unsere Ergebnisse liefern einen wichtigen Beitrag für die Grundlagenforschung zur Quantenphysik.“

Elektronen sind Elementarteilchen, die Elektrizität erst möglich machen. Die Ionisation ist beispielsweise die Grundlage für Solarzellen. Das Sonnenlicht löst Elektronen aus dem Silizium heraus und setzt hierdurch einen Stromfluss in Gang. Im Experiment werden Laser-Blitze eingesetzt, um Elektronen freizusetzen und die hierdurch veränderten Materiezustände zu messen sowie zu beschreiben. Laser sind jedoch auch unverzichtbare Werkzeuge beim Speichern und Übertragen von Information, in der Messtechnik, in der medizinischen Diagnostik und in der modernen Fertigungstechnik vom Schiffs- und Flugzeugbau bis hin zum Computerchip.

Publikation:
Coherent imaging of an attosecond electron wave packet
D. M. Villeneuve, Paul Hockett, M. J. J. Vrakking, Hiromichi Niikura
Science. 2017, Vol. 356, Issue 6343, doi: http://science.sciencemag.org/cgi/doi/10.1126/science.aam8393 (Link freigeschaltet nach Sperrfrist)

Bildmaterial sowie eine Zusammenfassung der Forschungsergebnisse (in Englisch) finden Sie im Anhang.

Bildunterschrift (18-1115_AttoSecPressR_NRC Ottawa to be credited.jpg): Künstlerdarstellung eines Experiments: Die Sequenz von zwei Laserfeldern interagiert mit den Elektronen, die in einem Atom zirkulieren. Das Ergebnis ist der Nachweis der Form einer elektronischen Wellenfunktion mit einer sechsfachen Symmetrie. Quelle: NRC Ottawa

Kontakt:
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI)
Prof. Dr. Marc Vrakking
Tel. 030 / 6392-1200
E-Mail marc.vrakking@mbi-berlin.de

Weitere Informationen:

http://science.sciencemag.org/cgi/doi/10.1126/science.aam8393

Anja Wirsing | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Weniger (Flug-)Lärm dank Mathematik
21.09.2017 | Forschungszentrum MATHEON ECMath

nachricht Der stotternde Motor im Weltall
21.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften