Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wechselwirkung von Licht und Materie - Ein perfektes Attosekunden-Experiment

16.06.2017

Mit einem sogenannten Attosekunden-Experiment ist es Physikern der Waseda-Universität in Japan, des National Research Council in Kanada und des Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) in Berlin gelungen, die Wellenfunktion eines ionisierten Elektrons komplett zu messen und zu beschreiben. Dieser Grad an Perfektion, den das Experiment erreicht, ist in diesem Forschungsbereich bislang einmalig. Die Ergebnisse sind jetzt in „Science“ erschienen.

Neuartige Experimente, die ultraschnelle Licht-Blitze einsetzen, revolutionieren derzeit die Laserforschung in der Physik. Sie liefern beispiellose Einblicke in die Materie – in die Struktur und Dynamik von Elektronen in Atomen, Molekülen und in kondensierten Phasen.


Nachweis der Form einer elektronischen Wellenfunktion mit einer sechsfachen Symmetrie

NRC Ottawa


Wellenfunktion eines ionisierten Elektrons

MBI Berlin

Mit einem sogenannten Attosekunden-Experiment ist es jetzt Physikern der Waseda-Universität in Japan, des National Research Council in Kanada und des Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) in Berlin gelungen, die Wellenfunktion eines ionisierten Elektrons komplett zu messen und zu beschreiben. Dieser Grad an Perfektion, den das Experiment erreicht, ist in diesem Forschungsbereich bislang einmalig. Die Ergebnisse sind jetzt in „Science“ erschienen.

Eine Attosekunde ist ein Millardstel einer Millardstel Sekunde. Sie verhält sich zu einer Sekunde wie eine Sekunde zum Alter des Universums. Attosekunden-Lichtimpulse ermöglichen es, die Zustände der Materie umfassend zu verändern. Elektronen werden durch die Laser-Blitze angeregt. Sie weisen dann ein höheres Energieniveau auf und nehmen eine neue Bahn, ein neues Orbital, ein.

Verschiedene Orbitale – oder: verschiedene Zustände des Elektrons – können hierbei beschrieben werden. Hierzu werden Quantenzahlen für die Energie, den Bahndrehimpuls sowie den Eigendrehimpuls genutzt. Wenn die Energie, die von dem Attosekundenpuls auf das Atom übertragen wird, hoch genug ist, kann das Elektron sogar ionisieren. Dies bedeutet, dass es das Atom verlässt und wegfliegt, zum Beispiel zu einem Detektor.

In dem Experiment gelang es den Wissenschaftlern, die Quantenzahlen eines freigesetzten Elektrons – oder auch: die Wellenfunktion eines freigesetzten Elektrons – komplett zu messen und mathematisch zu beschreiben. Daher spricht man auch von einem perfekten Attosekunden-Experiment.

„Die Attosekunden-Forschung ist noch sehr jung“, erklärt Prof. Dr. Marc Vrakking, Direktor am MBI und Mitautor der Publikation. „Erst durch die modernste Laser-Forschung haben wir die Möglichkeit, solche neuartigen Experimente mit ultrakurzen Lichtimpulsen durchzuführen und so umfassend die hierdurch verursachten Veränderungen in der Materie zu messen. Unsere Ergebnisse liefern einen wichtigen Beitrag für die Grundlagenforschung zur Quantenphysik.“

Elektronen sind Elementarteilchen, die Elektrizität erst möglich machen. Die Ionisation ist beispielsweise die Grundlage für Solarzellen. Das Sonnenlicht löst Elektronen aus dem Silizium heraus und setzt hierdurch einen Stromfluss in Gang. Im Experiment werden Laser-Blitze eingesetzt, um Elektronen freizusetzen und die hierdurch veränderten Materiezustände zu messen sowie zu beschreiben. Laser sind jedoch auch unverzichtbare Werkzeuge beim Speichern und Übertragen von Information, in der Messtechnik, in der medizinischen Diagnostik und in der modernen Fertigungstechnik vom Schiffs- und Flugzeugbau bis hin zum Computerchip.

Publikation:
Coherent imaging of an attosecond electron wave packet
D. M. Villeneuve, Paul Hockett, M. J. J. Vrakking, Hiromichi Niikura
Science. 2017, Vol. 356, Issue 6343, doi: http://science.sciencemag.org/cgi/doi/10.1126/science.aam8393 (Link freigeschaltet nach Sperrfrist)

Bildmaterial sowie eine Zusammenfassung der Forschungsergebnisse (in Englisch) finden Sie im Anhang.

Bildunterschrift (18-1115_AttoSecPressR_NRC Ottawa to be credited.jpg): Künstlerdarstellung eines Experiments: Die Sequenz von zwei Laserfeldern interagiert mit den Elektronen, die in einem Atom zirkulieren. Das Ergebnis ist der Nachweis der Form einer elektronischen Wellenfunktion mit einer sechsfachen Symmetrie. Quelle: NRC Ottawa

Kontakt:
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI)
Prof. Dr. Marc Vrakking
Tel. 030 / 6392-1200
E-Mail marc.vrakking@mbi-berlin.de

Weitere Informationen:

http://science.sciencemag.org/cgi/doi/10.1126/science.aam8393

Anja Wirsing | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht Rätselhaftes IceCube-Ereignis könnte von Tau-Neutrino stammen
19.06.2018 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungsnachrichten

Breitbandservices von DNS:NET erweitert

20.06.2018 | Unternehmensmeldung

Mit Parasiten infizierte Stichlinge beeinflussen Verhalten gesunder Artgenossen

20.06.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics